Abstract:
PURPOSE: A method for manufacturing a micro-macro channel reactor is provided to improve the long-term durability of a catalyst and to improve the yield and the reaction performance of the reactor by maximizing the performance of a catalyst fixed in the reactor. CONSTITUTION: An upper end plate(20) and a lower end plate(60) are prepared. A thermal exchanging plate(30), a catalyst plate(40), and a supporting plate(50) are respectively formed. An insertion hole(44) is formed at the lateral part of the catalyst plate. A catalyst part is inserted into the insertion hole of the catalyst plate. The supporting plate arranges a flow path for reactants. The reactants are transferred to the catalyst part through the flow path. The thermal exchanging plate, the catalyst plate, and the supporting plate are stacked between the upper plate and the lower plate.
Abstract:
PURPOSE: A FPSO-GTL process for converting gas of a marine oil field and a stranded gas field into liquefied fuel and a manufacturing method of synthetic fuel using the same are provided to burn associated gas of an oil field and natural gas of a stranded gas field, and then to convert into liquefied carbon compounds by a FPSO-GTL process without emitting carbon dioxide to the air. CONSTITUTION: A manufacturing method of synthetic fuel using a FPSO-GTL process for converting gas of a marine oil field and a stranded gas field into liquefied fuel comprises the steps of: separating crude oil and gas from FPSO equipment(100) and storing the separated crude oil in a crude oil storage device; saturating and desulfurizing the separated gas; reforming the saturated and desulfurized gas with carbon dioxide and vapor; producing synthetic gas including carbon monoxide and hydrogen; separating a portion of hydrogen from the deformed synthetic gas; sending the separated hydrogen to an upgrading reactor; removing carbon dioxide from the separated remnant synthetic gas; upgrading liquefied carbon compounds with the hydrogen supplied to the upgrading reactor; operating a fuel battery using synthetic gas or hydrogen to generate electric power; producing water and carbon dioxide as a product by reaction; producing vapor using the water produced by the fuel battery as a coolant; and returning the vapor together with the produced carbon dioxide to the reforming reactor.
Abstract:
PURPOSE: Novel metal modified hydrotalcite catalyst for reforming alcohols and a method for producing hydrogen using the same are provided to expand the life of the catalyst without plenty amount of vapor or oxygen. CONSTITUTION: Novel metal modified hydrotalcite catalyst for reforming alcohols immerses Group VIII elements in nickel-based catalyst in the structure of a modified hydrotalcite containing nickel, magnesium, and aluminum. The catalyst for reforming alcohols is represented by chemical formula 1. In chemical formula 1, A is one of Group VIII elements; x is between 0.1 and 5 inclusively; y is between 0.25 and 1 inclusively; and z is between 2 and 2.75 inclusively. The alcohols are C1 to C6 alcohol, C2 to C6 glycol, glycerol, or the mixture of the same.
Abstract:
PURPOSE: Nickel-based hydrotalcite catalyst for modifying the vapor of diesel, a method for manufacturing the same, and a method for manufacturing hydrogen based on the modification of diesel using the same are provided to improve the yield of hydrogen. CONSTITUTION: Nickel-based hydrotalcite catalyst for modifying the vapor of diesel is represented by chemical formula 1. In chemical formula 1, A is one or more alkali earth metal oxides; B is one or more Group 8B precious metal atoms; a is the content of the alkali earth metal in catalyst and is between 0 and 10 weight%; b is the content of the Group 8B precious metal atoms and is between 0 and 10 weight%; either of the alkali earth metal or the Group 8B precious metal atoms is more than or equal to 0 weight%; and x and y are the molar ratio of Ni and Mg; x is between 0.2 and 0.9; and y is between 0.5 and 5.5.
Abstract:
PURPOSE: A catalyst for a fischer-tropsch reaction using a mesoporous silica structure is provided to efficiently generate an intermediate distilled product in a liquid hydrocarbon range by manufacturing a stable catalyst support to the fischer-tropsch reaction. CONSTITUTION: An emulsion is generated by adding a surfactant to an organic solvent and an acidic aqueous solution. Silicon alkoxide is added to the emulsion to synthesize silica. The silica is aged and filtered. The filtered silica is dried and sintered to obtain mesoporous silica. A reactive metal for a fischer-tropsch catalyst is introduced to the mesoporous silica to obtain a fischer-tropsch catalyst. The reactive metal is the mixed metal of two or more selected from a group including cobalt, iron, ruthenium, nickel, palladium, platinum, and rhodium. The acidic aqueous solution is the aqueous solution of one or more selected from a group including hydrochloric acid, nitric acid, sulfuric acid, acetic acid, carbonic acid, and acetic acid.
Abstract:
본 발명은 피셔-트롭시(Fischer-Tropsch) 합성용 철-마그네슘계 촉매에 관한 것으로, 더 자세하게는 철, 마그네슘, 구리 및 칼륨을 포함하는 합성석유 제조용 철촉매에 대한 것으로 철 전구체와 마그네슘 전구체의 혼합 수용액에 탄산암모늄 용액을 첨부하여 혼합수용액의 pH를 7로조절하는 1단계; 상기 pH가 조절된 혼합 수용액을 필터링 및 워싱 후에, 건조 및 소성하여 철-마그네슘의 혼합물을 얻는 2단계; 상기 철-마그네슘의 혼합물에 칼륨 전구체 및 구리 전구체를 담지하는 3단계; 및 상기 칼륨 전구체 및 구리 전구체가 담지된 철-마그네슘 혼합물을 건조 및 소성하는 4단계;를 포함하는 합성석유 제조용 철-마그네슘계 촉매의 제조방법에 관한 것이다. 상기의 촉매는 피셔-트롭시 합성반응에서 C 12 이상인 탄화수소의 선택성이 우수하고, 촉매의 일산화탄소의 전환율이 기존 촉매에 비해 매우 높다.
Abstract:
PURPOSE: Iron-magnesium-based catalyst for fischer-tropsch synthesis and methods for manufacturing and using the same are provided to improve the selectivity of C12 or more hydrocarbon and the conversion rate to carbon monoxide in the fischer-tropsch synthesizing reaction. CONSTITUTION: Iron-magnesium-based catalyst includes iron(Fe), magnesium(Mg), copper(Cu), and potassium(K). An ammonium carbonate solution is added to the mixed aqueous solution of iron precursor and magnesium precursor. The pH of the mixed aqueous solution is regulated into neutral pH. The mixed aqueous solution is filtered, cleaned, dried, and sintered to obtain iron-magnesium mixture. Potassium precursor and copper precursor are immerged in the mixed aqueous solution. Drying and sintering operations are followed.