-
公开(公告)号:KR1020140003682A
公开(公告)日:2014-01-10
申请号:KR1020120067369
申请日:2012-06-22
Applicant: 한국과학기술원
IPC: H01L31/06 , H01L31/042
CPC classification number: Y02E10/50 , H01L31/042 , H01L31/06
Abstract: The present invention relates to a nonodiode having the structures of laminating metal on a semiconductor layer and laminating a p/n type organic/inorganic semiconductor layer on the metal, and to a solar cell comprising the same. According to the nanodiode of the present invention, the metal is functioned as a rear electrode of the p/n type organic/inorganic semiconductor layer (first optical absorption layer) laminated on the metal while being used as a second optical absorption layer for re-absorbing the light which is not absorbed in the first optical absorption layer. Wherein, the semiconductor layer deposited under the rear electrode efficiently collects the hot electron generated in the metal through a Schottky barrier generated between the metal which is the rear electrode and the semiconductor layer to use the principles of generating and detecting the hot electron, and the semiconductor layer finally performs the direct optical absorption, thereby maximizing the optical absorption conversion efficiency of the nanodiode. [Reference numerals] (101) Semiconductor layer; (102) Metal; (104) Glass substrate; (AA) P Organic/Inorganic; (BB) N Organic/Inorganic
Abstract translation: 本发明涉及具有将金属层叠在半导体层上并在该金属上层压p / n型有机/无机半导体层的结构的非二极管,以及包含该金属的太阳能电池。 根据本发明的纳米二极管,金属作为层叠在金属上的p / n型有机/无机半导体层(第一光吸收层)的背面电极发挥功能,同时用作第二光吸收层, 吸收未吸收在第一光吸收层中的光。 其中,沉积在后电极下的半导体层通过在作为后电极的金属和半导体层之间产生的肖特基势垒而有效地收集在金属中产生的热电子,以利用产生和检测热电子的原理, 半导体层最终执行直接光吸收,从而最大化纳米二极管的光吸收转换效率。 (101)半导体层; (102)金属; (104)玻璃基板; (AA)P有机/无机; (BB)N有机/无机
-
公开(公告)号:KR101340573B1
公开(公告)日:2013-12-12
申请号:KR1020120056097
申请日:2012-05-25
Applicant: 한국과학기술원
IPC: H01L29/861 , H01L31/042
CPC classification number: Y02E10/542
Abstract: 본 발명은 제1반도체층 위에 금속이 적층되고, 상기 금속 위에 제2반도체층이 적층된 구조를 갖는 적층형 금속-반도체 나노다이오드 및 이를 포함하는 태양전지에 관한 것으로, 본 발명의 적층형 금속-반도체 나노다이오드는 두 개의 반도체층을 금속의 양방향에 적층함으로써 다향방에서 오는 광에너지 및 상이한 크기의 광에너지를 효과적으로 흡수할 수 있어 에너지의 손실을 최소화하고 에너지 전환효율의 증폭을 가져올 수 있다. 따라서 본 발명은 적층형 금속-반도체 나노다이오드로 광에너지의 손실을 최소화하고 광전변환 효율을 향상시킬 수 있는 고효율의 태양전지를 제공할 수 있다.
-
13.
公开(公告)号:KR101227109B1
公开(公告)日:2013-01-28
申请号:KR1020110035312
申请日:2011-04-15
Applicant: 한국과학기술원
Abstract: 본 발명은 윤활성 유기분자층과 나노 입자의 복합체를 이용하여 마이크로단위 소자(MEMS; micro electro mechanical systems) 또는 나노단위 소자(NEMS; nano electro mechanical systems)의 작동효율을 향상시키는 방법에 관한 것으로서, 마이크로단위 소자 또는 나노단위 소자 표면의 마찰력 및 점착력을 제어함으로써 소자의 작동효율을 향상시킬 수 있다는 유리한 효과가 있다.
-
公开(公告)号:KR101598779B1
公开(公告)日:2016-03-02
申请号:KR1020140142325
申请日:2014-10-21
Abstract: 본발명의일 실시예에따른나노다이오드는핫 전자기반나노다이오드이며, 광에의해핫 전자가생성및 증폭되는그래핀층; 그래핀층과쇼트키접합을이루는반도체층;을포함한다.
Abstract translation: 本发明提供一种对光敏感且具有优异的光能转换特性的纳米二极管。 此外,纳米二极管可以以低成本生产,从而具有商业潜力。 根据本发明的一个实施例,纳米二极管是基于热电子的纳米二极管。 热电子纳米二极管包括:石墨烯层,其中产生热电子并用光放大; 与石墨烯层形成肖特基结的半导体层; 与石墨烯层形成欧姆接触的第一电极; 以及与半导体层形成欧姆接触的第二电极。
-
公开(公告)号:KR1020140126511A
公开(公告)日:2014-10-31
申请号:KR1020130044759
申请日:2013-04-23
CPC classification number: B01J37/349 , B01J23/42 , B01J37/0221 , B82Y40/00
Abstract: 본 발명은 금속산화물 기판 또는 분말 상에 아크 플라즈마 증착법으로 증착된 금속 나노입자를 포함하는 나노촉매에 관한 것이다. 본 발명의 나노촉매는 금속 나노입자가 기판 또는 분말에 고르게 분포되면서 안정적으로 고착화됨으로써 우수한 촉매 활성을 갖고, 또한 아크 플라즈마 증착법을 이용하여 증착시 전압의 세기를 조절함으로써 증착되는 금속 입자의 크기가 조절될 수 있다.
Abstract translation: 本发明涉及包含通过电弧等离子体沉积方法沉积在金属氧化物衬底或粉末上的金属纳米颗粒的纳米催化剂。 本发明的纳米催化剂通过将金属纳米粒子稳定地固定在基材或粉末上,同时将金属纳米粒子均匀分布在基材或粉末上,可以获得优异的催化活性。 此外,可以通过使用电弧等离子体沉积方法通过控制沉积期间的电压强度来调节沉积的金属颗粒的尺寸。
-
公开(公告)号:KR1020140086743A
公开(公告)日:2014-07-08
申请号:KR1020120157585
申请日:2012-12-28
Applicant: 한국과학기술원
IPC: C01G23/047 , B82B1/00 , B82B3/00
Abstract: The present invention relates to a nitrogen doped porous TiO_2 nanostructure which has activity not only in the wavelength range of the ultraviolet rays, but also in the wavelength range of visible rays; and to a manufacturing method thereof. The nitrogen doped porous TiO_2 nanostructure of the present invention is characterized by having a plurality of pores of 200 nm or less. The manufacturing method for a nitrogen doped porous TiO_2 nanostructure of the present invention is characterized by comprising: (a) a step of mixing titanium alkoxide and an ammonia solution; (b) a step of filtering precipitates generated by performing mixing in the step (a); (c) a step of drying filtrates filtered in step (b); and (d) a step of heat-treating materials dried in the step (c).
Abstract translation: 本发明涉及氮掺杂多孔TiO_2纳米结构,其不仅在紫外线的波长范围内,而且在可见光的波长范围内具有活性; 及其制造方法。 本发明的氮掺杂多孔TiO_2纳米结构体的特征在于具有200nm以下的多个孔。 本发明的氮掺杂多孔TiO_2纳米结构体的制造方法的特征在于:(a)将烷氧基钛与氨溶液混合的工序; (b)在步骤(a)中过滤通过进行混合而产生的沉淀物的步骤; (c)在步骤(b)中干燥过滤的滤液的步骤; 和(d)在步骤(c)中热处理干燥的材料的步骤。
-
公开(公告)号:KR1020140031730A
公开(公告)日:2014-03-13
申请号:KR1020120098413
申请日:2012-09-05
Applicant: 한국과학기술원
IPC: C01G23/047 , B82B1/00 , B82B3/00
CPC classification number: C23F1/02 , B82Y30/00 , B82Y40/00 , C23C14/083 , C23C14/3464 , C23C14/5873 , C23C18/1216 , C23C18/122 , C23C18/1254 , Y10T428/24355
Abstract: The present invention relates to a method for adjusting the wettability of a titanium dioxide layer against water by increasing the hydrophilic property of the titanium dioxide layer by nanostructuring the titanium dioxide layer and increasing the hydrophobic property of the titanium dioxide layer by coating the nanostructured titanium dioxide layer with a silane layer. The method for adjusting the wettability of a titanium dioxide layer against water according to the present invention comprises the steps of: (a) forming a titanium dioxide layer on a substrate; (b) forming a silica particle layer on the upper part of the titanium dioxide layer; (c) etching a surface of the laminate manufactured in step (b); and (d) forming a nanostructured titanium dioxide layer by removing the silica particle layer remaining after etching in step (c).
Abstract translation: 本发明涉及一种通过纳米二氧化钛层增加二氧化钛层的亲水性,并通过涂覆纳米结构二氧化钛来提高二氧化钛层的疏水性,从而调节二氧化钛层对水的润湿性的方法 层与硅烷层。 根据本发明的调节二氧化钛层对水的润湿性的方法包括以下步骤:(a)在基材上形成二氧化钛层; (b)在二氧化钛层的上部形成二氧化硅粒子层; (c)蚀刻步骤(b)中制造的层压板的表面; 和(d)通过除去步骤(c)中的蚀刻后残留的二氧化硅颗粒层,形成纳米结构二氧化钛层。
-
公开(公告)号:KR1020130132035A
公开(公告)日:2013-12-04
申请号:KR1020120056097
申请日:2012-05-25
Applicant: 한국과학기술원
IPC: H01L29/861 , H01L31/042
CPC classification number: Y02E10/542 , H01L31/042 , H01L29/861
Abstract: The present invention relates to a stacked metal-semiconductor nanodiode having a lamination structure where a first semiconductor layer is formed on a metal and a second semiconductor layer is formed on the metal, and a solar cell using the same. The stacked metal-semiconductor nanodiode of the present invention effectively absorbs different optical energy and the optical energy coming from multidirection by laminating two semiconductor layers in both directions of the metal, minimizes energy loss, and amplifies energy conversion efficiency. Therefore, the stacked metal-semiconductor nanodiode of the present invention minimizes the loss of optical energy and improves photoelectric transformation efficiency. [Reference numerals] (101) First semiconductor layer;(102) Metal (thin film-type nano structure);(103) Second semiconductor layer
Abstract translation: 本发明涉及具有叠层结构的叠层金属 - 半导体纳米二极管,其中在金属上形成第一半导体层,在金属上形成第二半导体层,以及使用该层叠结构的太阳能电池。 本发明的叠层金属 - 半导体纳米二极管通过在金属的两个方向上层压两个半导体层来有效地吸收不同的光能和来自多方向的光能,使能量损失最小化,并且放大能量转换效率。 因此,本发明的叠层金属 - 半导体纳米二极管使光能的损失最小化并提高光电转换效率。 (101)第一半导体层;(102)金属(薄膜型纳米结构);(103)第二半导体层
-
公开(公告)号:KR1020130043416A
公开(公告)日:2013-04-30
申请号:KR1020110107527
申请日:2011-10-20
Applicant: 한국과학기술원
CPC classification number: B01J38/18 , B01J23/44 , B01J23/464 , B01J23/468
Abstract: PURPOSE: The activation method of a transition metal nano catalyst and a transition metal nano catalyst activated thereby are provided to manufacture a transition metal nano catalyst in which a catalyst activation is improved regardless of the form of a catalyst with a simple process and obtain an economic effect by having a high reaction efficiency with the small amount of catalyst if the activated transition metal nano catalyst is used. CONSTITUTION: The activation method of a transition metal nano catalyst forms an oxide layer on the surface of a transition metal nano catalyst by chemically processing the surface of the transition metal nano catalyst. The transition metal nano catalyst is selected from a group consisting of rhodium, platinum, palladium, and iridium. The average diameter of the transition metal nano catalyst is 1 ~ 100 nm. The chemical surface process uses a method selected from a group consisting of an ultraviolet ray-ozone process or a plasma process. The ultraviolet ray-ozone process is performed by irradiating ultraviolet ray 150 ~ 300 nm in the ozone of 0.5 ~ 5 sccm. The plasma process performs the oxygen of 0.5 ~ 5 sccm with the power of 15 ~ 50W. The process is performed for 2 ~ 10 hours.
Abstract translation: 目的:提供过渡金属纳米催化剂和由此激活的过渡金属纳米催化剂的活化方法,以制备过渡金属纳米催化剂,其中催化剂活化随着催化剂形式的改进而改善,并且获得经济性 如果使用活化的过渡金属纳米催化剂,通过与少量催化剂具有高反应效率的作用。 构成:通过化学处理过渡金属纳米催化剂的表面,过渡金属纳米催化剂的活化方法在过渡金属纳米催化剂的表面上形成氧化物层。 过渡金属纳米催化剂选自铑,铂,钯和铱。 过渡金属纳米催化剂的平均直径为1〜100nm。 化学表面法使用选自紫外线 - 臭氧法或等离子体法的方法。 通过在0.5〜5sccm的臭氧中照射150〜300nm的紫外线进行紫外线 - 臭氧处理。 等离子体工艺的功率为0.5〜5sccm,功率为15〜50W。 进行2〜10小时。
-
公开(公告)号:KR1020120129242A
公开(公告)日:2012-11-28
申请号:KR1020110047377
申请日:2011-05-19
Applicant: 한국과학기술원
Abstract: PURPOSE: Hot electron based metal semiconductor nanodiode photocatalytic devices are provided to control the activity of reaction according to energy gap by controlling hot electrons. CONSTITUTION: A photocatalytic activity layer includes a white gold film layer and a gold thin film layer. The photocatalytic activity layer activates optical catalytic reaction. Organometallic compound includes Pt, Pd, Ni, Co, Fe and Mn. Transition metal complex includes Fe, Co, and Zn and Mn. The photocatalytic activity layer forms a charge transport layer and a Schottky diode.
Abstract translation: 目的:提供热电子基金属半导体纳米二极管光催化器件,通过控制热电子来控制反应活性。 构成:光催化活性层包括白金膜层和金薄膜层。 光催化活性层激活光催化反应。 有机金属化合物包括Pt,Pd,Ni,Co,Fe和Mn。 过渡金属络合物包括Fe,Co和Zn和Mn。 光催化活性层形成电荷传输层和肖特基二极管。
-
-
-
-
-
-
-
-
-