Abstract:
나노구조(10, 10', 10", 10''')는 높은 도전성의 마이크로 결정층(18), 바이폴라 나노와이어(16) 및 다른 층(18, 30)을 포함한다. 높은 도전성의 마이크로 결정층(18)은 마이크로 결정 재료 및 금속을 포함한다. 바이폴라 나노와이어(16)는 높은 도전성의 마이크로 결정층(18)에 부착된 한 단부 및 다른 층(18, 30)에 부착된 다른 단부를 갖는다.
Abstract:
An optical interconnect (100, 200, 300, 400, 500, 645) has a plurality of optical sources (110, 360, 460, 560), a first lens (115, 225, 325, 425, 525, 625) configured to collimate optical beams (320, 350) from the plurality of optical sources (110, 360, 460. 560), a second lens (120, 230, 335, 435, 535, 640) configured to refocus the optical beams (320, 350), and a plurality of optical receivers (125, 365, 465, 565) configued to receive the refocused optical beams (320, 350) from the second lens (120, 230, 335, 435, 535, 640).
Abstract:
Various embodiments of the present invention are directed to three-dimensionall crossbar arrays (500, 1000). In one aspect of the present invention, a three-dimensional crossbar array (1000) includes a plurality of crossbar arrays (1102-1104), a first demultiplexer (1106), a second demultiplexer (1108), and a third demultiplexer (1110). Each crossbar array includes a first layer of nanowires (702-704), a second layer of nanowires (706-708) overlaying the first layer of nanowires, and a third layer of nanowires (710-712) overlaying the second layer of nanowires. The first demultiplexer is configured to address nanowires in the first layer of nanowires of each crossbar array, the second demultiplexer is configured to address nanowires in the second layer of nanowires of each crossbar array, and the third demultiplexer is configured to supply a signal to the nanowires in the third layer of nanowires of each crossbar array.
Abstract:
Various embodiments of the present invention are related to photonic systems and methods that can be used to encode data in, and regulate transmission of, carrier electromagnetic waves. In one embodiment of the present invention, a photonic system (1000, 1500) comprises a first waveguide (1002) configured to transmit a number of electromagnetic waves. The photonic system (1000, 1500) includes a photonic crystal (1004, 1502) with a resonant cavity (1014, 1504) and is configured to selectively and evanescently couple one or more of the electromagnetic waves from the first waveguide (1002) into the reasonant cavity (1014, 1504). The photonic system (1000, 1500) also includes a second waveguide (1006) positioned to transmit and extract one or more electromagnetic waves from the reasonant cavity (1014, 1504) via evanescent coupling.
Abstract:
나노 와이어들, 광 검출기들 및 반도체 광 증폭기들을 포함하는 나노 와이어 기반 광전자 장치들(100, 200, 300, 400, 500)이 개시된다. 장치들은 단결정 및/또는 단결정 아닌 표면들로부터 성장된 나노 와이어들(114, 214, 324, 434, 436, 560, 562)을 포함한다. 반도체 광 증폭기들은 신호 도파관에 의해 운반되는 신호를 증폭하기 위해 밸러스트 레이저들로서 작용하는 나노 와이어 어레이들을 포함한다. 나노 와이어 레이저들 및 광 검출기들의 실시예들은 상이한 편광들을 제공할 수 있는 수평 및 수직 나노 와이어들(434, 436, 562, 560)을 포함한다. 나노 와이어 기반 광전자 장치, 반도체 광 증폭기, 광 검출기, 나노 와이어, 나노 와이어 레이저
Abstract:
양방향 데이터 송신을 위한 시스템은 제1 서브시스템에 결합된 제1 어레이 및 제2 서브시스템에 결합된 제2 어레이를 포함한다. 제1 어레이는 자유 공간을 통해 송신되는 제1 광 신호를 발생시키는 제1 복수의 송신기 그리고 제1 복수의 수신기를 포함한다. 제2 어레이는 자유 공간을 통해 제1 복수의 수신기쪽으로 송신되는 제2 광 신호를 발생시키는 제2 복수의 송신기 그리고 제1 광 신호를 수신하도록 구성되는 제2 복수의 수신기를 포함한다. 이미지 형성 장치는 제1 어레이와 제2 어레이 사이에 동작 가능하게 배치되고 제2 복수의 수신기에서 제1 복수의 송신기에 대한 이미지와 제1 복수의 수신기에서 제2 복수의 송신기에 대한 이미지를 동시에 형성하도록 구성된다.
Abstract:
Various embodiments of the present invention are related to microresonator systems that can be used as a laser, a modulator, and a photodetector and to methods for fabricating the microresonator systems. In one embodiment, a microresonator system comprises a substrate (106) having a top surface layer (104), at least one waveguide (114,116) embedded within the substrate (106), and a microdisk (102) having a top layer (118), an intermediate layer (122), a bottom layer (120), current isolation region (128), and a peripheral annular region (124,126). The bottom layer (120) of the microdisk (102) is in electrical communication with the top surface layer (104) of the substrate (106) and is positioned so that at least a portion of the peripheral annular region (124,126) is located above the at least one waveguide (114,116). The current isolation region (128) is configured to occupy at least a portion of a central region of the microdisk and has a relatively lower refractive index and relatively larger bandgap than the peripheral annular region.
Abstract:
A photonic guiding device and methods of making and using are disclosed. The photonic guiding device comprises a large core hollow waveguide (150) configured to interconnect electronic circuitry on a circuit board (240). A reflective coating (108) covers an interior of the hollow waveguide to provide a high reflectivity to enable light to be reflected from a surface of the reflective coating. A collimator (220) is configured to collimate multi-mode coherent light directed into the hollow waveguide.
Abstract:
Optical devices (100) including waveguide grating structures (102) are described. In accordance with one embodiment, an optical device (100) is provided comprising a horizontal waveguide grating structure (102) having at least one waveguiding layer (104) and at least one subwavelength periodic grating layer (106). The optical device (100) further comprises upper and lower cladding layers (108, 110) immediately adjoining respective upper and lower surfaces (209, 205) of the waveguide grating structure and having refractive indices lower than a lowest-index one of the waveguiding layers, incident radiation propagating (IN) through one of the upper and lower cladding layers (108, 110) toward the waveguide grating structure. The waveguide grating structure (102) is configured for peak reflection of the incident radiation at a peak reflection frequency. A cumulative thickness of the waveguiding layers (104) is less than one tenth of a free space wavelength of the incident radiation at the peak reflection frequency divided by an average refractive index of the waveguiding layers.
Abstract:
Nanowire-based opto-electronic devices (100, 200, 300, 400, 500) including nanowire layers, photodetectors and semiconductor optical amplifiers are disclosed. The devices include nanowires (114, 214, 324, 434, 436, 560, 562) grown from single crystal and/or non-single surfaces. The semiconductor optical amplifiers include nanowire arrays that act as ballast lasers to amplify a signal carried by a signal waveguide. Embodiments of the nanowire lasers and photodetectors include horizontal and vertical nanowires (434, 436, 562, 560) that can provide different ploarizations.