Abstract:
The present invention concerns microstructured articles comprising nanostructures such an antiglare films, antireflective films, as well as microstructured tools and methods of making microstructured articles.
Abstract:
Various embodiments of an optical construction and an electronic device that includes such optical construction are disclosed. The optical construction includes a lens film having an outermost structured first major surface and an opposing outermost substantially planar second major surface. The structured first major surface includes a plurality of microlenses. The optical construction also includes a mask disposed adjacent to the second major surface of the lens film and includes a plurality of laser-ablated openings disposed through the mask. The openings are aligned to the microlenses in a one-to-one correspondence. The mask further includes a UV-cured polymer material and an optically absorptive material.
Abstract:
An optical construction includes a lens layer and optically opaque first and second mask layers. The lens layer has a first major surface including a plurality of microlenses arranged along orthogonal first and second directions. The first and second mask layers are spaced apart from the first major surface and define respective pluralities of through first and second openings therein arranged along the first and second directions. The first mask layer is disposed between the structured first major surface and the second mask layer. There is a one-to-one correspondence between the microlenses and the first and second openings. The optical construction includes an intermediate layer disposed between the structured first major surface and the first mask layer and including an undulating second major surface facing, and in substantial registration with, an undulating third major surface of first mask layer so as to define a substantially uniform spacing therebetween.
Abstract:
An optical construction can include a lens layer including microlenses formed on a substrate and at least one light absorbing optical cavity disposed on a substrate side of the lens layer. Each light absorbing optical cavity has an average thickness of less than about 300 nm and includes an optically transparent middle layer disposed between light absorbing first and second end layers. Each of the first and second end layers, but not the middle layer, defines a plurality of through openings therein aligned in a one-to-one correspondence with the microlenses. The optical construction can include an optically transparent spacer layer disposed between two light absorbing optical cavities. An optical system includes the optical construction and a refractive component including at least one prism film.
Abstract:
A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm ≤ L2 – L1 ≤ 50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
Abstract:
Optical films and stacks include at least one optically diffusive layer. The optically diffusive layer can include a plurality of nanoparticles and a polymeric material bonding the nanoparticles to each other to form a plurality of nanoparticle aggregates defining a plurality of voids therebetween. For substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm: in the visible wavelength range, the optical film or optically diffusive layer has an average specular transmittance Vs; and in the infrared wavelength range, the optical film or optically diffusive layer has an average total transmittance It and an average specular transmittance Is, Is/It ≥ 0.6, Is/Vs ≥ 2.5.
Abstract:
An optical system is disclosed and includes an optical sensor configured to receive light and form an image. The optical system further includes a microlens film including a structured first major surface opposite a second major surface, the structured first major surface includes a regular array of spaced apart microlenses arranged across a width and a length of the microlens film and each microlens has an effective imaging area and configured to form an image onto the optical sensor. A light absorbing layer is disposed on the array of spaced apart microlenses and reduces the effective imaging area of each microlens by at least 10%. A display panel, the optical sensor, the microlens film and the display plane are substantially co-extensive with each other along the width and length of the microlens film.
Abstract:
An optical film assembly comprises a light redirecting film (110) having a first structured major surface (112) and a second, opposed major surface (114). An optical adhesive layer (120) is disposed on the second major surface of the light redirecting film. A light diffusion film (140) comprises a first major surface (142) comprising a light diffusion surface and a second, opposed major surface (144). A plurality of discrete optical decoupling structures (146) project from the light diffusion surface and contact the optical adhesive layer. An air gap (148) is defined between the first major surface of the light diffusion film and the optical adhesive layer. Embodiments of optical film assemblies described herein are useful, for example, for hiding optical defects and improving the brightness uniformity of light emitted by a light source.
Abstract:
A diffuser including opposing structured first and second major surfaces is described. The first major surface includes a first plurality of surface structures providing a uniform first haze. The second major surface includes a first portion adjacent an edge and a second portion adjacent the first portion. The first portion includes a first region and a second region between the first region and the second portion. The second major surface includes a second plurality of surface structures providing a uniform second haze over the second portion and providing a third haze in the first portion. The third haze in the first region is higher than the second haze, and the third haze in the second region is monotonically decreasing. The second portion has a surface area of at least 90 percent of a surface area of the second major surface.
Abstract:
Optical stack is disclosed. The optical stack includes a light redirecting film that includes a first structured major surface that includes a plurality of unitary discrete structures. The optical stack also includes an optical adhesive layer that is disposed on the light directing film. At least portions of at least some unitary discrete structures in the plurality of unitary discrete structures penetrate into the optical adhesive layer. At least portions of at least some unitary discrete structures in the plurality of unitary discrete structures do not penetrate into the optical adhesive layer. The peel strength of the light redirecting film and the optical adhesive layer is greater than about 30 grams/inch. The average effective transmission of the optical stack is not less or is less than by no more than about 10% as compared to an optical stack that has the same construction except that no unitary discrete structure penetrates into the optical adhesive layer.