Abstract:
Halbleiterbauteil, umfassend einen Tragrahmen (2) und wenigstens ein an dem Tragrahmen (2) angebrachtes Halbleitermodul (3), wobei der Tragrahmen (2) eine jeweilige Durchbrechung (6) aufweist, auf deren Rand (7) eine Grundplatte (4) des Halbleitermoduls (3) aufliegt, wobei die Grundplatte (4) mit dem Tragrahmen (2) verlötet ist.
Abstract:
A transformer (1) is provided, which comprises a tank (10) having an enclosed volume (11) with an insulating material (13), the tank (10) comprising at least one channel (25) extending through the tank (10), wherein the interior of the at least one channel (25) is separated from the enclosed volume (11) of the tank (10) by a channel wall (17). A transformer core (30) is provided outside of the enclosed volume (11), comprising at least one core leg (32) extending through the tank (10) via the at least one channel (25). At least one coil (50, 52) is located inside the enclosed volume (11), the coil (50, 52) being wound about the at least one channel (25), wherein the tank (10) has an inner wall or outer wall (16) comprising a semiconductive layer (40), which comprises fibers (42) embedded in an impregnating material (44).
Abstract:
An electric power converter device (1) comprises a first power semiconductor module (100) and a frame (20) for a closed cooler. The first power semiconductor module (100) includes a first base plate (30) having a first main side (32), a second main side (33) opposite the first main side and a lateral side surface (34) extending along a circumferential edge of the first base plate (30) and connecting the first and the second main side. The frame (20) is attached to the second main side (33) of the first base plate (20). The first base plate (30) has a first step (35A) on the second main side (33) along the circumferential edge of the first base plate (30) to form a first recess (35) along the circumferential edge of the first base plate (30), in which first recess (35) a first portion (21) of the frame (20) is received.
Abstract:
A transformer (1) is suggested. The transformer comprises: a first winding (10) arranged around an axis (2), and a second winding (20) arranged around the axis (2), wherein the second winding (20) comprises a litz wire (23) having an end portion (21) located at an axial end position of the second winding (20) and a middle portion (22) located at an axial middle position of the second winding (20), the litz wire (23) having a first cross section at the end portion (21) and a second cross section at the middle portion (22), the first and second cross sections each comprising in a quadrant between the axial outward direction and the direction pointing towards the first winding (10) a curvature extending between the axial outward direction and the direction pointing towards the first winding (10), wherein the curvature of the first cross section is smaller than the curvature of the second cross section thereby reducing the peak magnitude of the electrical field between the end portion (21) of the second winding (20) and the first winding (10).
Abstract:
A transformer (100) includes a transformer core (110) having a first core leg (111) having a first longitudinal axis (11) and second core leg (112) having a second longitudinal axis (12); a first low voltage (LV) winding (121) arranged around the first core leg (111), a first high voltage (HV) winding (131) arranged around the first LV winding (121); a second low voltage (LV) winding (122) arranged around the second core leg (112); and a second high voltage (HV) winding (132) arranged around the second LV winding (122), wherein the first HV winding (131) is provided with a first HV connector (133) and a second HV connector (134) each extending substantially perpendicular away from the first longitudinal axis (11), and wherein the second HV winding (132) is provided with a third HV connector (135) and a fourth HV connector (136) each extending substantially perpendicular away from the second longitudinal axis (12).
Abstract:
A two-phase heat exchanger for cooling at least one electronic and/or electric component with an evaporator and a condenser is provided. The evaporator is adapted to transfer heat from the electronic and/or electric component to a working fluid. The condenser comprises a roll-bonded panel, which has a first channel which has a first connection port and a second connection port. The evaporator has a second channel and first connection openings and second connection openings. The first connection port of the first channel is connected to one first connection opening of the evaporator and the second connection port of the first channel is connected to one second connection opening of the evaporator and the working fluid is provided in order to convey heat by means of convection from the evaporator to the condenser by flowing from the second channel through the first connection opening or the second connection opening of the evaporator towards the first channel.
Abstract:
Leistungselektronikmodul (1) mit einem ersten Leistungselektronikelement (5), welches im Betrieb des Leistungselektronikmoduls (1) einen ersten Wärmestrom (29) erzeugt, und mit einem zweiten Leistungselektronikelement (6), welches im Betrieb des Leistungselektronikmoduls (1) einen zweiten Wärmestrom (30) erzeugt, und mit einem Sekundärkühlkreislauf (25), einem ersten Kühler (10), einem zweiten Kühler (11) und einem Wärmetauscher (14). Dabei ist der erste Kühler (10) zur Aufnahme mindestens eines Teils des ersten Wärmestromes (29) thermisch mit dem ersten Leistungselektronikelement (5) verbunden, und der zweite Kühler (11) zur Aufnahme mindestens eines Teils des zweiten Wärmestromes (30) thermisch mit dem zweiten Leistungselektronikelement (6) verbunden, wobei der Wärmetauscher (14) zur Übertragung mindestens eines Teils des ersten Wärmestromes (29) und des zweiten Wärmestromes (30) an einen Primärkühlstrom (26) im Betrieb des Leistungselektronikmoduls (1) ausgebildet ist. Der Wärmetauscher (14) ist dabei thermisch für einen abführbaren Wärmestrom ausgelegt, der betragsmässig kleiner als eine aus dem maximalen ersten Wärmestrom (29) und dem maximalen zweiten Wärmestrom (30) gebildete Summe ist.