Abstract:
An analog to digital converter adapted to perform a first, more significant, part of a conversion as a successive approximation conversion, a pipeline conversion or a flash conversion and a second, least significant, part of a conversion as a sigma-delta conversion.
Abstract:
Embodiments of the present invention provide a motor-driven mechanical system with a detection system to measure properties of a back channel and derive oscillatory characteristics of the mechanical system. Uses of the detection system may include calculating the resonant frequency of the mechanical system and a threshold drive DTH required to move the mechanical system from the starting mechanical stop position. System manufacturers often do not know the resonant frequency and DTH of their mechanical systems precisely. Therefore, the calculation of the specific mechanical system's resonant frequency and DTH rather than depending on the manufacturer's expected values improves precision in the mechanical system use. The backchannel calculations may be used either to replace or to improve corresponding pre-programmed values.
Abstract:
A no-missing-code output from a SAR, pipeline, folding, flash analog to digital conversion can be obtained by providing an analog input to an analog to digital converter having a predetermined m bit resolution output and a predetermined missing code capability and generating in a digital filter from the m bit output and the dither of the random noise components of the m_bit output n bit output and greater than the predetermined missing code capability of the analog to digital converter.
Abstract:
Embodiments of the present invention provide a motor-driven mechanical system with a detection system to measure properties of a back channel and derive oscillatory characteristics of the mechanical system. Uses of the detection system may include calculating the resonant frequency of the mechanical system and a threshold drive DTH required to move the mechanical system from the starting mechanical stop position. System manufacturers often do not know the resonant frequency and DTH of their mechanical systems precisely. Therefore, the calculation of the specific mechanical system's resonant frequency and DTH rather than depending on the manufacturer's expected values improves precision in the mechanical system use. The backchannel calculations may be used either to replace or to improve corresponding pre-programmed values.
Abstract:
A charge pump system for a fast locking phase lock loop includes a set n of charge pump units; and a control logic circuit for enabling the set of n charge pump units to produce up and down charge pulses with a nominal charge pump mismatch in a wide bandwidth mode; and in a narrow bandwidth mode enabling at least a subset of the n charge pump units sequentially to produce an average charge pump mismatch in narrow bandwidth mode that matches the nominal charge pump mismatch in the wide bandwidth mode.
Abstract:
A gain compensation technique for a fractional-N phase lock loop includes locking a reference signal with the N divider feedback signal in a phase lock loop including a phase detector, charge pump, loop filter and voltage control oscillator with an N divider in its feedback loop; driving the N divider with a sigma delta modulator including at least one integrator to obtain a predetermined fractional-N feedback signal; and commanding a scaling in phase lock loop gain by a predetermined factor and synchronously inversely scaling by that factor the contents of at least one of the integrators.
Abstract:
A fractional-N synthesiser (10) and method of phase synchronising the output signal with the input reference signal in a fractional-N synthesiser by generating a synchronisation pulse at integer multiples of periods of he input reference signal (28) and gating (44) the synchronisation pulse to re-initialise the interpolator (26) in the fractional-N synthesiser to synchronise the phase of the output signal with the input reference signal.