Abstract:
Method and device relate to improved sensor configurations in a user device are disclosed. A device implements the improved sensor configurations includes a switch configured to detect a force applied by a user, one or more touch sensors configured to detect an angular position of the user input which are peripherally located relative to the switch, and a processor configured to generate a signal for performing a task selected from a plurality of predefined tasks in accordance with the force and the angular position of the user input.
Abstract:
Surfaces having structured optical appearances are disclosed. The surface can include substrate, a first optical coating disposed on the substrate having a first refractive index; and a second optical coating disposed on the first optical coating having a second refractive index. The first refractive index is different than the second refractive index. Other surfaces can include a substrate having a visible surface, wherein the visible surface comprises a plurality of structural features, wherein each of the structural features is configured to transmit a light wave that optically interacts with waves of light of other structural features to create a visual appearance. Still other surfaces can include a substrate and an optical coating disposed on the substrate. The optical coating comprising particles in an ordered array within a matrix, wherein the matrix has a first refractive index and the particles have a second refractive index.
Abstract:
Disclosed herein is a bulk metallic glasses (BMG) comprising 0.0001 wt% to 0.7 wt% of Be, 0.0001 wt% to 0.2 wt% of Be, or 0.06 wt% to 0.08 wt% of Be. Be may have the effect of reducing a liquidus temperature of the BMG relative to melting temperatures of individual alloying elements of the BMG.
Abstract:
Various embodiments provide methods and apparatus for forming bulk metallic glass (BMG) articles using a mold having a stationary mold part and a movable mold part paired to form a mold cavity. A molten material can be injected to fill the mold cavity. The molten material can then be cooled into a BMG article at a desired cooling rate. While injecting and/or cooling the molten material, the movement of the movable mold part can be controlled, such that a thermal contact between the molten material and the mold can be maintained. BMG articles can be formed without forming an underfilled part. Additional structural features can be imparted in the BMG article during formation. At least a portion of the formed BMG article can have an aspect ratio (first dimension/second dimension) of at least 10 or less than 0.1.
Abstract:
Various embodiments provide materials, parts, and methods useful for electronic devices. One embodiment includes providing a coating on at least one surface of a substrate, increasing an amorphicity of the coating, and incorporating the substrate including the coating having increased amorphicity into an electronic device. Another embodiment relates to frictionally transforming a coating from crystalline into amorphous to form a metamorphically transformed coating for an electronic device. Another embodiment relates to an electronic device part having a metamorphically transformed coating disposed on at least one surface thereof.
Abstract:
One embodiment provides a method comprising: providing a sample comprising a bulk amorphous alloy; scanning ultrasonically at least a portion of the sample to determine a parameter of the sample in the portion; and comparing the parameter to a predetermined standard to derive a property related to the sample.
Abstract:
Various sapphire and laminate structures are discussed herein. One embodiment may take the form of a sapphire structure having a first sapphire sheet with a first sapphire plane type forming the major surface and a second sapphire sheet having a second different sapphire plane type forming the major surface. The first and second sapphire sheets are fused together to form the sapphire structure.
Abstract:
The described embodiments relate generally to cosmetic surfaces and associated treatments to form cosmetic surfaces. Cosmetic surface treatments as described herein both increase durability and decrease the appearance of physical damage through implementation of an intermediate barrier layer having a first physical attribute (e.g., color of barrier layer) of a predetermined relationship with a second physical attribute of a second layer (e.g., color of a cosmetic layer). The intermediate barrier layer separates the second layer (e.g., a cosmetic or external layer) from internal material supporting both. The first physical attribute may be chosen to be of a similar appearance to the second physical attribute (e.g., matching and/or somewhat closely matching in color) such that physical damage to the cosmetic layer is made less visible.
Abstract:
A housing for an electronic device, including an aluminum layer enclosing a volume that includes a radio-frequency (RF) antenna is provided. The housing includes a window aligned with the RF antenna; the window including a non-conductive material filling a cavity in the aluminum layer; and a thin aluminum oxide layer adjacent to the aluminum layer and to the non-conductive material; wherein the non-conductive material and the thin aluminum oxide layer form an RF-transparent path through the window. A housing for an electronic device including an integrated RF-antenna is also provided. A method of manufacturing a housing for an electronic device as described above is provided.
Abstract:
The embodiments described herein relate to forming anodized films that have a white appearance. In some embodiments, an anodized film having pores with light diffusing pore walls created by varying the current density during an anodizing process is described. In some embodiments, an anodized film having light diffusing micro-cracks created by a laser cracking procedure is described. In some embodiments, a sputtered layer of light diffusing aluminum is provided below an anodized film. In some embodiments, light diffusing particles are infused within openings of an anodized layer.