Abstract:
Methods of altering the surface of a metallic glass are provided. The methods include blasting and oxidation of a metallic glass surface, blasting a metallic glass surface using multiple shot media sizes, and thermal spray blasting a metallic glass surface with controlled cooling.
Abstract:
A metal matrix composite using as one of the components a precious metal is described. In one embodiment, the precious metal takes the form of gold and the metal matrix composite has a gold mass fraction in accordance with 18 k. The metal matrix composite can be formed by blending a precious metal ( e.g. , gold) powder and a ceramic powder, forming a mixture that is then compressed within a die having a near net shape of the metal matrix composite. The compressed mixture in the die is then heated to sinter the precious metal and ceramic powder. Other techniques for forming the precious metal matrix composite using HIP, and a diamond powder are also disclosed.
Abstract:
An apparatus with a vessel (20), a first induction source (30), and a second induction source (32) in the melt zone (12). The first induction source (30) is used to melt the material received in the vessel (20). The second induction source (32) is used to contain the material in a meltable form within the vessel (20) during melting. The coils (26) of each of the first and second induction sources (30,32) can be arranged such that they intertwine in an alternate fashion or that they are in sets in a series. The coils (26) of the sources (30,32) can also sequentially receive power such that the material is moved through the ejection path after melting and into an adjacent mold. The vessel (20) can be positioned along a horizontal axis (X). The apparatus can be used to melt and mold amorphous alloys; for example.
Abstract:
Disclosed herein is a bulk metallic glasses (BMG) comprising 0.0001 wt% to 0.7 wt% of Be, 0.0001 wt% to 0.2 wt% of Be, or 0.06 wt% to 0.08 wt% of Be. Be may have the effect of reducing a liquidus temperature of the BMG relative to melting temperatures of individual alloying elements of the BMG.
Abstract:
Various embodiments provide methods and apparatus for forming bulk metallic glass (BMG) articles using a mold having a stationary mold part and a movable mold part paired to form a mold cavity. A molten material can be injected to fill the mold cavity. The molten material can then be cooled into a BMG article at a desired cooling rate. While injecting and/or cooling the molten material, the movement of the movable mold part can be controlled, such that a thermal contact between the molten material and the mold can be maintained. BMG articles can be formed without forming an underfilled part. Additional structural features can be imparted in the BMG article during formation. At least a portion of the formed BMG article can have an aspect ratio (first dimension/second dimension) of at least 10 or less than 0.1.
Abstract:
A method of manufacturing a housing of an electronic device includes determining a sintering profile configured to produce a selected color at a selected depth within a wall of the housing, sintering a ceramic housing precursor in accordance with the determined sintering profile, thereby forming the housing, and removing material from the housing up to the selected depth.
Abstract:
Disclosed is an injection molding system including a first plunger rod and a second plunger rod configured to move or transport molten material from a melt zone and into a mold. The first and second plunger rods are configured to control and contain the molten material therebetween while moving. The second plunger rod can also be positioned relative to the mold to apply pressure on one side of the mold as the first plunger rod pushes molten material into the mold on an opposite side to force the material into the mold cavity. The second plunger rod can further be used to eject a molded (bulk amorphous) object from the mold. The rods can move in a longitudinal direction (e.g., horizontally) between the melt zone and mold along a longitudinal axis.