Abstract:
In order to facilitate communication between an electronic device and another electronic device, the electronic device determines communication-quality metrics for a first connection in a wireless network based on received information from the other electronic device. Then, the electronic device calculates an overall communication-quality indicator for the first connection based on at least some of the communication-quality metrics. Moreover, the electronic device dynamically adapts the communication with the other electronic device based on the overall communication-quality indicator. For example, the electronic device may establish a second connection in a cellular-telephone network and may use the second connection to communicate with the other electronic device. Alternatively, the electronic device may provide the overall communication-quality indicator to the other electronic device and may at least partially transition the communication from the second connection in the cellular-telephone network to the first connection in the wireless network.
Abstract:
A user device receives packets from a base station. The user device may invoke decoding while the packet is still being received, based on the incomplete contents of a given packet. This "partial packet decoding" relies on the fact that the underlying information in the packet is encoded with redundancy (code rate less than one). If link quality is poor, the partial packet decoding is likely to be unsuccessful, i.e., to fail in its attempt to recover the underlying information. To avoid waste of power, the user device may be configured to apply one or more tests of link quality prior to invoking the partial packet decoding on a current packet.
Abstract:
A mobile wireless device adapts transmit power levels and number of retransmissions of a preamble sent to a wireless network. The mobile wireless device measures characteristics of a downlink signal received from the wireless network. The mobile wireless device transmits a series of preambles to the wireless network, each successive preamble having an increased power level, starting at a power level based on the measured received signal characteristics and on parameters received from the wireless network, up to a maximum transmit power level. When the transmit power level of the preamble exceeds the maximum transmit power level and when the measured downlink signal quality falls below a threshold, the mobile wireless device limits the number of preamble retransmission to less than an allowed maximum number of retransmissions. A minimum number of retransmissions is determined and adapted to higher values for larger measured values of downlink signal quality.
Abstract:
A method for facilitating in-device coexistence between wireless communication technologies on a wireless communication device is provided. The method can include transmitting data traffic from the wireless communication device via an aggressor wireless communication technology; determining occurrence of an in-device interference condition resulting from transmission of the data traffic via the aggressor wireless communication technology interfering with concurrent data reception by the wireless communication device via a victim wireless communication technology; and reducing a bit rate of the data traffic transmitted via the aggressor wireless communication technology in response to the in-device interference condition.
Abstract:
A method of modulating transmission power to facilitate in-device coexistence between wireless communication technologies is provided. The method can include determining a scheduled time period during which data is received by a device via a first wireless communication technology. The method can further include reducing a transmission power of a transmission from the device via a second wireless communication technology to a threshold level prior to the scheduled time period and controlling the transmission power so that the transmission power does not exceed the threshold level during the scheduled time period. The method can additionally include, subsequent to the time period, increasing the transmission power to a level exceeding the threshold level.
Abstract:
Methods and apparatus for synchronizing operational state during hybrid network operation. In one embodiment, the various access technologies that makeup the hybrid network not fully synchronized. Thus, a wireless device operating in a mixed mode must be capable of managing synchronization across multiple access technologies. The wireless device is configured to estimate an expected "tune-away" period when disengaging with a one access technology to address events (for example, link maintenance, calls, data, and the like) or perform monitoring on a second access technology. The estimate is then used by the device to adjust its operational parameters on the technology from which it is tuning away. This ensures smooth switching away from and back to the various network technologies.
Abstract:
Managing radio resources across dual networks includes a wireless mobile device connecting to a first wireless network using a first radio access technology. The wireless device may notify the first network of a capability to be temporarily non-responsive to the first network while maintaining a signaling connection to the first network. The wireless device may communicate with a second network. The wireless device may return to communicating with the first network subsequent to communicating with the second network, and in response to communicating with the second network for less than a predetermined amount of time, the wireless device may send a scheduling request to the first network. In response to receiving a grant acknowledgement from the first network, the wireless device may send a buffer status report that includes a value such as zero to indicate that the wireless device has returned to and can communicate with the first network.
Abstract:
Apparatus and methods for implementing "intelligent" receive diversity management in e.g., a mobile device.. In one implementation, the mobile device includes an LTE-enabied UE, and the intelligent diversity management includes selectively disabling receive diversity (RxD) in that device upon meeting a plurality of criteria including (i) a capacity criterion, and (it) a connectivity criterion. In one variant, the capacity criterion includes ensuring that an achievable data rate associated with a single Rx (receive) chain is comparable to that with RxD.
Abstract:
A single chip mobile wireless device capable of receiving and transmitting over one wireless network at a time maintains registration on two wireless communication networks that each use different communication protocols in parallel. Periodically, the mobile wireless device tunes one or more receivers from a first wireless network to a second wireless network in order to listen for paging messages addressed to the mobile wireless device from the second wireless network. The first wireless network suspends allocation of radio resources to the mobile wireless device based on receipt of a suspension message from the mobile wireless device, or based on knowledge of a paging cycle for mobile wireless device in the second wireless network, or based on detection of an out of synchronization condition with the mobile wireless device.