Abstract:
Packages and methods of formation are described. In an embodiment, a system in package (SiP) includes first and second redistribution layers (RDLs), and a plurality of die attached to the front and back side of the first RDL. The first and second RDLs are coupled together with a plurality of conductive pillars extending from the back side of the first RDL to a front side of the second RDL.
Abstract:
An inductive device is disclosed, including a first wire coupled to a first terminal and to a second terminal, a non-conductive material surrounding the first wire, and a magnetic film. The non-conductive material spans the region from the first terminal to the second terminal. The magnetic film surrounds at least a portion of the non-conductive material between the first terminal and the second terminal. The first wire has a first amount of inductance.
Abstract:
Packages and 3D die stacking processes are described. In an embodiment, a package includes a second level die hybrid bonded to a first package level including a first level die encapsulated in an oxide layer, and a plurality of through oxide vias (TOVs) extending through the oxide layer. In an embodiment, the TOVs and the first level die have a height of about 20 microns or less.
Abstract:
Packages including an embedded die with through silicon vias (TSVs) are described. In an embodiment, a first level die including TSVs is embedded between a first redistribution layer (RDL) and a second RDL, and a second level die is mounted on a top side of the first redistribution layer. In an embodiment, the first level die is an active die, less than 50 μm thick.
Abstract:
Stitched die packaging techniques and structures are described in which reconstituted chips are formed using wafer reconstitution and die-stitching techniques. In an embodiment, a chip includes a reconstituted chip-level back end of the line (BEOL) build-up structure to connect a die set embedded in an inorganic gap fill material.
Abstract:
Stitched die packaging techniques and structures are described in which reconstituted chips are formed using wafer reconstitution and die-stitching techniques. In an embodiment, a chip includes a reconstituted chip-level back end of the line (BEOL) build-up structure to connect a die set embedded in an inorganic gap fill material.
Abstract:
Die reconstitution methods and dies with reconstituted contact bumps are described. In an embodiment, a die reconstitution method includes reconstituting a plurality of dies including first contact bumps of a first type, partially removing the first contact bumps, and forming second contact bumps of a second type on top of the partially removed first contact bumps, where the second type is different than the first type.
Abstract:
Semiconductor packages and fan out die stacking processes are described. In an embodiment, a package includes a first level die and a row of conductive pillars protruding from a front side of the first level die. A second level active die is attached to the front side of the first level die, and a redistribution layer (RDL) is formed on an in electrical contact with the row of conductive pillars and a front side of the second level active die.
Abstract:
Stitched die packaging techniques and structures are described in which reconstituted chips are formed using wafer reconstitution and die-stitching techniques. In an embodiment, a chip including a reconstituted chip-level back endo of the line (BEOL) build-up structure to connect a die set embedded in an inorganic gap fill material.
Abstract:
An inductive device is disclosed, including a first wire coupled to a first terminal and to a second terminal, a non-conductive material surrounding the first wire, and a magnetic film. The non-conductive material spans the region from the first terminal to the second terminal. The magnetic film surrounds at least a portion of the non-conductive material between the first terminal and the second terminal. The first wire has a first amount of inductance.