Abstract:
A system that includes multiple integrated circuits is disclosed. A first integrated circuit of the system includes a plurality of circuit blocks, and a first circuit block of the plurality of circuit blocks includes a first power terminal. A second integrated circuit of the system includes multiple voltage regulation circuits, a second power terminal coupled to an output of a given voltage regulation circuit, and a third power terminal coupled to an input of the given voltage regulation circuit. A substrate, included in the system, includes a plurality of conductive paths, each of which includes a plurality of wires fabricated on a plurality of conductive layers. The system further includes a power management unit that may be configured to generate a power supply voltage at a fourth power terminal that is coupled to the third power terminal via a first conductive path of the plurality of conductive paths.
Abstract:
Chip structures and electronic modules including a power delivery network (PDN) routing structure and signal routing structure to balance power, signaling, and thermal requirements are described. In an embodiment, the chip includes a device layer, a PDN routing structure on top of the device layer, and a signal routing structure underneath the device layer.
Abstract:
Systems including voltage regulator circuits are disclosed. In one embodiment, an apparatus includes a voltage regulator controller integrated circuit (IC) die including one or more portions of a voltage regulator circuit. The apparatus further includes a capacitor die, an inductor die, and an interconnect layer arranged over the voltage regulator controller IC die, the capacitor die and the inductor die. The interconnect provides electrical connections between the voltage regulator controller IC die, the capacitor die and the inductor die to form the voltage regulator circuit. In a further embodiment, the voltage regulator controller IC die, the capacitor die and the inductor die are arranged in a planar fashion within a voltage regulator module. In still another embodiment, a system IC is coupled to the voltage regulator module and includes one or more functional circuit blocks coupled to receive a regulated supply voltage generated by the voltage regulator circuit.
Abstract:
Systems that include integrated circuit dies and voltage regulator units are disclosed. Such systems may include a voltage regulator module and an integrated circuit mounted in a common system package. The voltage regulator module may include a voltage regulator circuit and one or more passive devices mounted to a common substrate, and the integrated circuit may include a System-on-a-chip. The system package may include an interconnect region that includes wires fabricated on multiple conductive layers within the interconnect region. At least one power supply terminal of the integrated circuit may be coupled to an output of the voltage regulator module via a wire included in the interconnect region.
Abstract:
Systems that include integrated circuit dies and voltage regulator units are disclosed. Such systems may include a voltage regulator module and an integrated circuit mounted in a common system package. The voltage regulator module may include a voltage regulator circuit and one or more passive devices mounted to a common substrate, and the integrated circuit may include a System-on-a-chip. The system package may include an interconnect region that includes wires fabricated on multiple conductive layers within the interconnect region. At least one power supply terminal of the integrated circuit may be coupled to an output of the voltage regulator module via a wire included in the interconnect region.
Abstract:
Power management systems are described. In an embodiment, a power management system includes a voltage source, a circuit load located within a chip, and a switched capacitor voltage regulator (SCVR) coupled to voltage source and the circuit load to receive an input voltage from the voltage source and supply an output voltage to the circuit load. The SCVR may include circuitry located within the chip and a discrete integrated passive device (IPD) connected to the chip.
Abstract:
A system that includes an integrated circuit die and a power supply decoupling unit is disclosed. The system includes an integrated circuit die, and interconnection region, and a decoupling unit. The integrated circuit die includes a plurality of circuits, which each include multiple devices interconnected using wires fabricated on a first plurality of conductive layers. The interconnection region includes multiple solder balls, and multiple conductive paths, each of which includes wires fabricated on a second plurality conductive layers. At least one solder ball is connected to an Input/Output terminal of a first circuit of the plurality of circuits via one of the conductive paths. The decoupling unit may include a plurality of capacitors and a plurality of terminals. Each terminal of the decoupling unit may be coupled to a respective power terminal of a second circuit of the plurality of circuits via the conductive paths.
Abstract:
Integrated circuit (IC) structure, IC die structures and methods of fabrication are described in which one or more edge recesses are formed in an IC die. Upon direct bonding to an electronic component, a molding compound can be applied to the bonded structure where the molding compound fills the one or more edge recesses and encroached underneath the IC die and between the IC die and the electronic component.
Abstract:
Microelectronic modules are described. In an embodiment, a microelectronic module includes a module substrate, a chip mounted onto the module substrate, and a semiconductor-based integrated passive device between the chip and the module substrate. The semiconductor-based integrated passive device may include an upper RDL stack-up with thicker wiring layers than a lower BEOL stack-up. The semiconductor-based integrated passive device may be further solder bonded or hybrid bonded with the chip.
Abstract:
Stitched die packaging techniques and structures are described in which reconstituted chips are formed using wafer reconstitution and die-stitching techniques. In an embodiment, a chip includes a reconstituted chip-level back end of the line (BEOL) build-up structure to connect a die set embedded in an inorganic gap fill material.