Abstract:
Nonuniformities in the efficiency of detection of individual fluorescing reaction mixtures in a well plate with a two-dimensional array well array are corrected. The nonuniformities arise both from the stimulation pattern and the detection pattern, and are corrected by adding additional segments to a pair of segmented mirrors. The additional segments are oriented to direct light to the outermost reaches (i.e., the four corners) of the array and thereby produce a stimulation pattern that has a greater intensity in the outermost regions. This compensates for a radial decline in the efficiency of the detector in detecting the emissions from the well plate, the radial decline being an artifact of systems that utilize CCDs or similar components as detectors.
Abstract:
Translational motion of a scanning head relative to a planar target, or vice versa, is achieved by a belt and pulley system with a counterweight that is also driven by a belt and pulley system at the same speed but in the opposite direction as the scanning head. The components and belt and pulley system are oriented such that all moving components remain on one side of the target and remain so during their entire range of movement.
Abstract:
A moving coil actuator that moves in a rapid back-and-forth motion is constructed with a magnet assembly that concentrates the magnetic flux in a region of limited length and with a coiled electric conductor that includes two separated regions of densely wound coil, the assembly and conductor arranged such that only one of the coil regions resides in a concentrated fl ux region at either end of the actuator stroke. This is achieved with either a single region of concentrated flux or two spatially separated regions of concentrated flux. In either case, the force constant, i.e., the motor force generated in each coil per unit of current through the coil, is non-linear, with a maximal force at each end of the stroke and a minimal force at the stroke mid-point. The result is an efficient use of the electric current and relatively small amounts of materials of construction, and accordingly less weight for the actuator to carry during its travel and its changes of direction.
Abstract:
A fluorescence detection apparatus includes a support structure attachable to the thermal cycler and a detection module movably mountable on the support structure. The detection module includes one or more channels, each having an excitation light generator and an emission light detector both disposed within the detection module. The excitation light generator includes a diffuser to provide a more uniform light distribution. When the support structure is attached to the thermal cycler and the detection module is mounted on the support structure, the detection module is movable so as to be positioned in optical communication with different ones of the plurality of wells. The detection module can interrogate different wells while in motion over the wells.
Abstract:
Nonuniformities in the efficiency of detection of individual fluorescing reaction mixtures in a well plate with a two-dimensional array well array are corrected. The nonuniformities arise both from the stimulation pattern and the detection pattern, and are corrected by adding additional segments to a pair of segmented mirrors. The additional segments are oriented to direct light to the outermost reaches (i.e., the four corners) of the array and thereby produce a stimulation pattern that has a greater intensity in the outermost regions. This compensates for a radial decline in the efficiency of the detector in detecting the emissions from the well plate, the radial decline being an artifact of systems that utilize CCDs or similar components as detectors.
Abstract:
Translational motion of a scanning head relative to a planar target, or vice versa, is achieved by a belt and pulley system with a counterweight that is also driven by a belt and pulley system at the same speed but in the opposite direction as the scanning head. The components and belt and pulley system are oriented such that all moving components remain on one side of the target and remain so during their entire range of movement.