Creation of three-dimensional structures using ultrashort low energy laser exposure and structures formed thereby

    公开(公告)号:AU1198801A

    公开(公告)日:2001-06-12

    申请号:AU1198801

    申请日:2000-10-12

    Applicant: CORNING INC

    Abstract: Use of ultrashort, focused pulses to alter a detectable optical property in a specific region in a structure allows lower energy to be used in fabrication of a three-dimensional, periodic array of altered regions in a material. These properties may be, for example, an index of refraction, absorption or scattering. The typical spacing between altered regions may be larger than a wavelength of interest, to create diffractive optical elements, or may be roughly the same as a wavelength of interest, to create photonic crystal elements. The photonic crystal may have a photonic band gap, i.e., a frequency range in which no modes may propagate, or may simply have altered dispersion properties but no gap, as in a photonic crystal superprism.

    METHOD OF MAKING A GLASS SHEET USING CONTROLLED COOLING
    13.
    发明申请
    METHOD OF MAKING A GLASS SHEET USING CONTROLLED COOLING 审中-公开
    使用控制冷却制作玻璃板的方法

    公开(公告)号:WO2007014066A3

    公开(公告)日:2007-04-19

    申请号:PCT/US2006028461

    申请日:2006-07-21

    CPC classification number: C03B17/064 C03B17/067 Y02P40/57

    Abstract: Methods of drawing glass sheet via a downdraw process are provided. In certain aspects, the methods utilize rapid cooling below the root (70) of the forming apparatus (10). Such rapid cooling can, for example, facilitate the use of glass having a liquidus viscosity less than about 100,000 poise. In other aspects, the methods utilize slow cooling between the viscosities of 10 11 poises and 10 14 poises. Such slow cooling can facilitate the production of glass substrates which exhibit low levels of compaction. In further aspects, substrates are removed from the glass sheet at elevated temperatures which can facilitate increases in the production rates of downdraw machines. In still further aspects, rapid cooling below the root, slow cooling between the viscosities of 10 11 poises and 10 14 poises, and/or substrate removal at elevated temperatures are combined. Such combinations can facilitate economically effective utilization of downdraw equipment.

    Abstract translation: 提供了通过下拉工艺绘制玻璃板的方法。 在某些方面,该方法利用在成形装置(10)的根部(70)下方的快速冷却。 这种快速冷却可以例如有利于使用液相线粘度小于约100,000泊的玻璃。 在其它方面,该方法利用在10psi和10psi之间的粘度之间的缓慢冷却。 这种缓慢的冷却可以促进显示低压实水平的玻璃基板的生产。 在另外的方面,在升高的温度下将基材从玻璃板上除去,这可以促进下拉机的生产速率的增加。 在另外的方面,将根部下方的快速冷却,在10psi的粘度和10-14个泊位之间的缓慢冷却和/或在升高的温度下的基底去除被组合。 这种组合可以有助于经济上有效地利用下拉设备。

    COMPOSITE OPTICAL WAVEGUIDE FIBER
    14.
    发明申请
    COMPOSITE OPTICAL WAVEGUIDE FIBER 审中-公开
    复合光波导光纤

    公开(公告)号:WO03029855A2

    公开(公告)日:2003-04-10

    申请号:PCT/US0224279

    申请日:2002-08-01

    Applicant: CORNING INC

    Inventor: ALLAN DOUGLAS C

    CPC classification number: G02B6/2551

    Abstract: The present invention includes a composite optical waveguide fiber. The composite optical waveguide fiber includes a first optical waveguide fiber. The first optical waveguide fiber has a first diameter and a first outermost layer having a first coefficient of thermal expansion. The composite optical waveguide fiber further includes a second optical waveguide fiber coupled to the first optical waveguide fiber. The second optical waveguide fiber has a second diameter and a second outermost layer, the second outermost layer having a second coefficient of thermal expansion. Wherein the first coefficient of thermal expansion is greater than the second coefficient of thermal expansion. Wherein the first diameter is greater than the second diameter.

    Abstract translation: 本发明包括复合光波导光纤。 复合光波导光纤包括第一光波导光纤。 第一光波导纤维具有第一直径和具有第一热膨胀系数的第一最外层。 复合光波导光纤还包括耦合到第一光波导光纤的第二光波导光纤。 第二光波导纤维具有第二直径和第二最外层,第二最外层具有第二热膨胀系数。 其中第一热膨胀系数大于第二热膨胀系数。 其中第一直径大于第二直径。

    MAGNETIC PHOTONIC CRYSTAL STRUCTURE FOR PROVIDING SPATIAL FREQUENCY ASYMMETRY FOR LIGHT PROPAGATING IN DIFFERENT DIRECTIONS
    15.
    发明申请
    MAGNETIC PHOTONIC CRYSTAL STRUCTURE FOR PROVIDING SPATIAL FREQUENCY ASYMMETRY FOR LIGHT PROPAGATING IN DIFFERENT DIRECTIONS 审中-公开
    用于提供不同方向光传播的空间频率不对称的磁光子晶体结构

    公开(公告)号:WO2006058183A2

    公开(公告)日:2006-06-01

    申请号:PCT/US2005042675

    申请日:2005-11-22

    CPC classification number: B82Y20/00 G02B6/1225

    Abstract: A magnetic photonic crystal for providing asymmetry of spatial frequencies in the propagation of light is provided. The crystal is formed from at least two materials having different indices of refraction which are aligned along the longitudinal axis of the crystal. And arranged in an array whose symmetry does not include a spatial inversion operator such that (x,y) =/= (-x,-y). One or more of the materials forming the array is magnetic such that the magnetic group representation of the array does not include time inversion as a symmetric operator. In operation, when the magnetic material forming the material is magnetized, the group velocity property of light propagated in one direction along the axis of the array is different from the group velocity property of light transmitted in an opposite direction through the array. The magnetic photonic crystal may be used, for example, as an optical memory device or a high speed modulator/demodulator.

    Abstract translation: 提供了一种用于在光传播中提供空间频率不对称的磁光子晶体。 晶体由具有不同折射率的至少两种材料形成,其沿着晶体的纵向轴线排列。 并且排列成阵列,其对称性不包括空间反演算子,使得(x,y)= / =(-x,-y)。 形成阵列的一种或多种材料是磁性的,使得阵列的磁组表示不包括作为对称算子的时间反演。 在操作中,当形成材料的磁性材料被磁化时,沿着阵列的轴在一个方向上传播的光的组速度特性不同于沿与阵列相反的方向透射的光的组速度特性。 磁光子晶体可以用作例如光存储器件或高速调制器/解调器。

    METHOD OF OPTIMIZING GLASS STRAIN
    16.
    发明申请
    METHOD OF OPTIMIZING GLASS STRAIN 审中-公开
    优化玻璃菌株的方法

    公开(公告)号:WO2005043597A3

    公开(公告)日:2006-02-23

    申请号:PCT/US2004036101

    申请日:2004-10-29

    CPC classification number: G05B13/024

    Abstract: A method of determining parameters of plurality of thermal cycles to achieve a set glass strain level includes providing a plurality of input parameters for a glass substrate and a plurality of parameters for a plurality of thermal cycles. The method also includes iteratively modifying at least one of the pluralities of thermal cycle parameters so the glass strain is not greater than the set glass strain level after a final thermal cycle is completed. An aspect of the method usefully enables a user to determine from the material parameters and processing sequences of the glass manufacturer and further entities that may further process the glass (e.g., the glass manufacturer's customers) whether a particular glass strain can be achieved; and if not the example embodiments allows the manufacturer to calculate changes in the customers' processes to meet the desired glass strain.

    Abstract translation: 确定多个热循环的参数以实现凝固玻璃应变水平的方法包括为玻璃基板提供多个输入参数和多个热循环的多个参数。 该方法还包括迭代地修改多个热循环参数中的至少一个,使得在最终热循环完成之后玻璃应变不大于设定的玻璃应变水平。 该方法的一个方面有用地使用户能够根据玻璃制造商的材料参数和处理顺序以及可以进一步处理玻璃(例如,玻璃制造商的客户)的玻璃制品的其他实体是否可以实现特定的玻璃应变来确定; 并且如果不是示例性实施例允许制造商计算客户过程中的变化以满足期望的玻璃应变。

    OPTIMIZED DEFECTS IN PHONOTIC BAND-GAP WAVEGUIDES
    17.
    发明申请
    OPTIMIZED DEFECTS IN PHONOTIC BAND-GAP WAVEGUIDES 审中-公开
    PHONOTIC BAND-GAP WAVEGUIDES中优化的缺陷

    公开(公告)号:WO02075392A3

    公开(公告)日:2003-04-03

    申请号:PCT/US0205240

    申请日:2002-02-11

    Applicant: CORNING INC

    CPC classification number: B82Y20/00 G02B6/02328 G02B6/1225

    Abstract: Disclosed is a photonic band-gap crystal waveguide having the physical dimension of the photonic crystal lattice and the size of the defect (12, 20) selected to provide for optimum mode power confinement to the defect. The defect (12, 20) has a boundary which has a characteristic numerical value associated with it. The ratio of this numerical value to the pitch (4) of the photonic crystal is selected to avoid surface modes found to exist in certain configurations of the photonic band-gap crystal waveguide. Embodiments in accord with the invention having circular and hexagonal defect cross sections are disclosed and described. A method of making the photonic band-gap crystal waveguide is also disclosed and described.

    Abstract translation: 公开了具有光子晶格的物理尺寸和选择的缺陷(12,20)的尺寸以提供对缺陷的最佳模式功率约束的光子带隙晶体波导。 缺陷(12,20)具有与其相关联的特征数值的边界。 选择该数值与光子晶体的间距(4)的比率以避免发现在光子带隙晶体波导的某些配置中存在的表面模式。 公开和描述了具有圆形和六边形缺陷横截面的本发明的实施例。 还公开并描述了制造光子带隙晶体波导的方法。

    PREFERRED CRYSTAL ORIENTATION OPTICAL ELEMENTS FROM CUBIC MATERIALS
    20.
    发明申请
    PREFERRED CRYSTAL ORIENTATION OPTICAL ELEMENTS FROM CUBIC MATERIALS 审中-公开
    优质晶体取向陶瓷材料的光学元素

    公开(公告)号:WO02093201A2

    公开(公告)日:2002-11-21

    申请号:PCT/US0215100

    申请日:2002-05-14

    Applicant: CORNING INC

    CPC classification number: G02B1/08 C30B29/12 C30B33/00 G02B1/02 G03F7/70966

    Abstract: The invention provides a method of making a oriented calcium fluoride lens. In a preferred embodiment, the below 194 nm transmitting optical element is a oriented calcium fluoride beam splitter.

    Abstract translation: 本发明提供了一种通过提供具有输入面{100}晶体的光学元件光学氟化钙晶体来制造<194nm波长氟化钙晶体光刻元件,沿着光轴发射具有最小双折射的小于约194nm的波长的方法 并且将具有光轴的光刻元件的光学平版印刷元件表面形成输入面{100}晶面,其光轴与光学氟化钙晶体的<100 <晶体方向对准。 在优选实施例中,下述194nm透射光学元件是<100>取向的氟化钙透镜。 在优选实施例中,下述194nm透射光学元件是<100>取向氟化钙分束器。

Patent Agency Ranking