Abstract:
The present invention relates generally to a wavelength conversion device (10) and a laser projection system (100) incorporating the same. According to one embodiment of the present invention, the wavelength conversion device is provided to a laser projection system (100). The wavelength conversion device (10) comprises an axial waveguide portion (12A) and a pair of lateral planar waveguide portions (12B) confined between a pair of relatively low index cladding layers (14). The effective index of refraction in the axial waveguide portion (12A) of the waveguide region and the effective index of refraction in the lateral planar waveguide portions (12B) of the waveguide region (12) are established such that the relatively low intensity laterally distributed parasitic light (17) is associated with a scattering angle ? that is at least as large as the beam divergence angle of the relatively high intensity light (15) propagating in the axial waveguide portion (12A).
Abstract:
A microstructured optical fiber is described. The microstructured optical fiber comprises an inner region and an outer region. The inner region includes an inner material and a plurality of holes formed in the inner material. The outer region surrounds the inner region, and includes an outer material. The softening point temperature of the inner material is greater than the softening point temperature of the outer material by at least about 50° C. Microstructured optical fiber preforms and methods for making the microstructured optical fibers are also described. The microstructured optical fiber may be made to have substantially undistorted holes in the inner region.
Abstract:
A fiber optic waveguide (30) is provided. The fiber optic waveguide includes a core region (34), and a cladding region surrounding the core region. The cladding region includes an inner cladding region (32) and an outer cladding region (42). The inner cladding region has a lattice of ring structures. The core region is formed from a high index material and the cladding region is formed from materials producing an effective refractive index lower than the refractive index of the core region.
Abstract:
A microstructured optical fiber (30) is described. The microstructured optical fiber (30) comprises an inner region (32) and an outer region (34). The inner region (32) includes an inner material (36) and a plurality of holes formed in the inner material (36). The outer region (34) surrounds the inner region (32), and includes an outer material (42). The softening point temperature of the inner material (36) is greater than the softening point temperature of the outer material (42) by at least about 50 °C. Microstructured optical fiber preforms and methods for making the microstructured optical fibers are also described. The microstructured optical fiber may be made to have substantially undistorted holes in the inner region.
Abstract:
Disclosed is a photonic band-gap crystal waveguide having the physical dimension of the photonic crystal lattice and the size of the defect (12, 20) selected to provide for optimum mode power confinement to the defect. The defect (12, 20) has a boundary which has a characteristic numerical value associated with it. The ratio of this numerical value to the pitch (4) of the photonic crystal is selected to avoid surface modes found to exist in certain configurations of the photonic band-gap crystal waveguide. Embodiments in accord with the invention having circular and hexagonal defect cross sections are disclosed and described. A method of making the photonic band-gap crystal waveguide is also disclosed and described.
Abstract:
A microstructured optical fiber is described. The microstructured optical fiber comprises an inner region and an outer region. The inner region includes an inner material and a plurality of holes formed in the inner material. The outer region surrounds the inner region, and includes an outer material. The softening point temperature of the inner material is greater than the softening point temperature of the outer material by at least about 50° C. Microstructured optical fiber preforms and methods for making the microstructured optical fibers are also described. The microstructured optical fiber may be made to have substantially undistorted holes in the inner region.
Abstract:
A fiber optic waveguide is provided. The fiber optic waveguide includes a core region, and a cladding region surrounding the core region. The cladding region includes an inner cladding region and an outer cladding region. The inner cladding region has a lattice of ring structures. The core region is formed from a high index material and the cladding region is formed from materials producing an effective refractive index lower than the refractive index of the core region.
Abstract:
Disclosed is a photonic band-gap crystal waveguide having the physical dimension of the photonic crystal lattice and the size of the defect selected to provide for optimum mode power confinement to the defect. The defect has a boundary which has a characteristic numerical value associated with it. The ratio of this numerical value to the pitch of the photonic crystal is selected to avoid surface modes found to exist in certain configurations of the photonic band-gap crystal waveguide. Embodiments in accord with the invention having circular and hexagonal defect cross sections are disclosed and described. A method of making the photonic band-gap crystal waveguide is also disclosed and described.
Abstract:
A fiber optic waveguide is disclosed. The fiber optic waveguide includes a core region, and a moat region surrounding the core region. A cladding region surrounds the moat region and the core region. The cladding region includes a lattice of column structures disposed within a solid background matrix. A diameter of the core region is sized for making contact with the moat region for creating an extended core region at longer wavelengths. The core region, the moat region, and the cladding region function to produce unique dispersion compensating properties, which include negative dispersion and positive dispersion. The core region may be formed from a high index material and the moat region may be formed from a material having a refractive index lower than the refractive index of the core region. The cladding region is formed from a material having a refractive index which is higher than the index of the moat region and lower than the refractive index of core region.