Abstract:
The present invention generally relates to a variable capacitor for RF and microwave applications. The variable capacitor includes a bond pad that has a plurality of cells electrically coupled thereto. Each of the plurality of cells has a plurality of MEMS devices therein. The MEMS devices share a common RF electrode, one or more ground electrodes and one or more control electrodes. The RF electrode, ground electrodes and control electrodes are all arranged parallel to each other within the cells. The RF electrode is electrically connected to the one or more bond pads using a different level of electrical routing metal.
Abstract:
The present disclosure generally relates to a MEMS device for reducing ESD. A contacting switch is used to ensure that there is a closed electrical contact between two electrodes even if there is no applied bias voltage.
Abstract:
The present disclosure generally relates to the combination of MEMS intrinsic technology with specifically designed solid state ESD protection circuits in state of the art solid state technology for RF applications. Using ESD protection in MEMS devices has some level of complexity in the integration which can be seen by some as a disadvantage. However, the net benefits in the level of overall performance for insertion loss, isolation and linearity outweighs the disadvantages.
Abstract:
The present disclosure generally relates to a device having a variable frequency filter that rejects harmonics generated by a variable reactance device. The variable frequency filter may be coupled to the antenna and the variable reactance device. The filter includes a variable capacitor and an inductor coupled together as a resonant circuit. The filter may be used in cellular technology to prevent harmonic frequencies that are created by another variable reactance device from reaching the antenna of the cellular device. Furthermore, the filter can reflect any receiving frequencies from the antenna and prevent the receiving frequencies from passing through.
Abstract:
The present invention generally relates to MEMS devices and methods for their manufacture. The cantilever of the MEMS device may have a waffle-type microstructure. The waffle-type microstructure utilizes the support beams to impart stiffness to the microstructure while permitting the support beam to flex. The waffle-type microstructure permits design of rigid structures in combination with flexible supports. Additionally, compound springs may be used to create very stiff springs to improve hot-switch performance of MEMS devices. To permit the MEMS devices to utilize higher RF voltages, a pull up electrode may be positioned above the cantilever to help pull the cantilever away from the contact electrode.
Abstract:
The present invention generally relates to cellular phones having multiple antennas. The invention relates to how two antennas in a diversity or MIMO antenna system interact through mutual coupling. The mutual coupling is due to proximity of the two antennas, their antenna pattern and efficiency. The performance of the system can be optimized by adjusting the mutual coupling between the antennas. The primary and secondary antennas can be "tuned" and "de-tuned" respectively to enhance system performance. In this invention, the primary and secondary antennas are tuned independently using MEMS capacitor configured in the antenna aperture for frequency tuning.
Abstract:
The present disclosure generally relates to the combination of MEMS intrinsic technology with specifically designed solid state ESD protection circuits in state of the art solid state technology for RF applications. Using ESD protection in MEMS devices has some level of complexity in the integration which can be seen by some as a disadvantage. However, the net benefits in the level of overall performance for insertion loss, isolation and linearity outweighs the disadvantages.
Abstract:
The present invention generally relates to a MEMS DVC utilizing one or more MIM capacitors. The MIM capacitor may be disposed between the MEMS device and the RF pad or the MIM capacitor may be integrated into the MEMS device itself. The MIM capacitor ensures that a low resistance for the MEMS DVC is achieved.
Abstract:
The present invention generally relates to a MEMS device having a plurality of cantilevers that are coupled together in an anchor region and/or by legs that are coupled in a center area of the cantilever. The legs ensure that each cantilever can move/release from above the RF electrode at the same voltage. The anchor region coupling matches the mechanical stiffness in all sections of the cantilever so that all of the cantilevers move together.