Abstract:
Disclosed are a microphone and a manufacturing method thereof. The microphone includes a substrate with a through portion formed in a central portion thereof, a vibration membrane disposed on the substrate and covering the through portion, a fixed membrane installed above the vibration membrane and spaced apart from the vibration membrane with an air layer interposed therebetween, and including a plurality of air inlets perforated in a direction toward the air layer, a support layer supporting the fixed membrane installed above the vibration membrane and spaced apart from the vibration membrane, a back plate formed on the fixed membrane and the support layer and having the air inlet formed to extend in a central portion thereof, and an air outflow part allowing air of the air layer to flow to an outer area of an edge of a sensing area of the fixed membrane on the back plate.
Abstract:
A microphone includes a case including a sound hole; a sound element which outputs a sound output signal based on a sound signal that enters the case through the sound hole; and a semiconductor chip connected to the sound element and configured to adjust an applied voltage which is applied to the sound element in accordance with the sound output signal. A rigidity of a vibration layer of the sound element is adjusted in accordance with the applied voltage.
Abstract:
A microphone device includes a case having a sound hole and a phase delay membrane. A plurality of non-directional microphones disposed in the case. A semiconductor chip is connected to the non-directional micro electro mechanical system (MEMS) microphones and operating in response to input signals, in which any one of the non-directional microphones forms a directional microphone by being connected with the sound hole and the phase delay membrane of the case.
Abstract:
Disclosed are a method of manufacturing a microphone, a microphone, and a control method thereof. The method includes forming a sound sensing module on a main substrate including a first sound aperture such that the sound sensing module is connected to the first sound aperture. The method further include forming a cover for receiving the sound sensing module formed therein with a second sound aperture corresponding to the first sound aperture on the main substrate. The method also includes forming a sound delay filter at a receiving space of the cover to be connected to the second sound aperture. The method also includes forming a semiconductor chip electrically connected to the sound sensing module at the receiving space, to selectively operate the sound delay filter according to a signal output from the sound sensing module.
Abstract:
A high sensitivity microphone includes a substrate having a through portion provided in a central portion thereof, a vibration membrane disposed on the substrate and covering the through portion, a fixed membrane installed above the vibration membrane, spaced apart from the vibration membrane with an air layer interposed therebetween, and having a plurality of air inlets perforated in a direction toward the air layer, and a plurality of support posts provided as vertical elastic posts between the fixed membrane and the vibration membrane and mechanically fixing the vibration membrane by a frictional force, regardless of an applied voltage.
Abstract:
A microphone includes: a vibration electrode disposed in an upper portion of a substrate which has an acoustic hole; a fixed electrode separated from the upper portion of the vibration electrode by a reference distance and having an insulation membrane on each of an upper surface and a lower surface of the fixed electrode; and a piezoelectric electrode having a plurality of beams disposed in a radial direction outwards from a center of an upper portion of the fixed electrode and uniformly maintaining a space between the vibration electrode and the fixed electrode by bending the fixed electrode in one direction according to an input voltage.
Abstract:
A microphone includes: a substrate configured to have a through hole formed at a central portion thereof; a vibration membrane disposed to cover the through hole on the substrate to include a slit pattern in which slit patterns are arranged in a plurality of lines along a circular edge thereof; a fixed membrane separately mounted at an upper portion of the vibration membrane with an air layer therebetween to have a plurality of air inlets that extend therebetween in a direction of the air layer; and a support layer configured to support the fixed membrane separately mounted on the vibration membrane.
Abstract:
A Micro Electro Mechanical System (MEMS) microphone is provided. The MEMS microphone includes: a substrate including an audio hole and having an oxide layer at a predetermined segment along an upper surface edge; a vibration electrode that is supported by a support layer that is formed along an upper surface edge in a state that is separated to the inside of the center from the oxide layer at an upper portion corresponding to the audio hole; a fixed electrode that is formed at an upper portion of the oxide layer and in which one side of the support layer is bonded to one side of a low surface; and a back plate that is formed at an upper portion of the fixed electrode and in which the other side of the support layer is bonded to one side of a low surface.
Abstract:
A high sensitivity microphone includes a substrate having a through portion provided in a central portion thereof, a vibration membrane disposed on the substrate and covering the through portion, a fixed membrane installed above the vibration membrane, spaced apart from the vibration membrane with an air layer interposed therebetween, and having a plurality of air inlets perforated in a direction toward the air layer, and a plurality of support posts provided as vertical elastic posts between the fixed membrane and the vibration membrane and mechanically fixing the vibration membrane by a frictional force, regardless of an applied voltage.
Abstract:
A microphone includes a plurality of vibration membrane electrodes, and a plurality of fixing membrane electrodes that respectively faces the plurality of vibration membrane electrodes and forms a plurality of unit capacitors along with the facing vibration membrane electrodes, wherein the plurality of unit capacitors generates a plurality of unit output signals according to inputs of a power source and a sound source, and outputs a signal combining the plurality of unit output signals as an output signal corresponding to the sound source.