Abstract:
An optical device comprises a substrate having a plane surface. An optical path is disposed on the substrate and extends in a plane parallel to the surface of the substrate. A recess intercepts the optical path. An optical element is provided for modifying light incident thereon. The optical element is moveable within the recess between a first position in which the optical element is located in the path and a second position in which optical element is remote from the path. A cantilever suspends the optical elements for movement within the recess between the second and first positions in a direction normal to the surface of the substrate.
Abstract:
An optical device comprises a substrate having a plane surface. An optical path is disposed on the substrate and extends in a plane parallel to the surface of the substrate. A recess intercepts the optical path. An optical element is provided for modifying light incident thereon. The optical element is moveable within the recess between a first position in which the optical element is located in the path and a second position in which optical element is remote from the path. A cantilever suspends the optical elements for movement within the recess between the second and first positions in a direction normal to the surface of the substrate.
Abstract:
A method for at least partially releasing microstructures from a substrate is provided. The method comprises the steps of: a) providing a substrate (2); b) depositing onto said substrate (2) a first layer (4) and a second layer (6), the first layer (4) and the second layer (6) each comprising an electrically conducting material and each having a different oxido-reduction potential; c) electrically connecting the first layer (4) and the second layer (6); d) forming a microstructure (8) on the first (4) and second (6) layers deposited in step b) to produce an intermediate structure (10); and e) electrochemically etching said second layer (6) by immersing the intermediate structure (10) formed in step d) in an electrolyte (12).
Abstract:
A microsystem switch (1, 20, 25, 30, 33) has a support (2) defining a recess (3), and a flexible bridge (6) is mounted on the support (2) bridging the recess (3). The bridge (6) is shaped so as to hold selectively a concave support stable state, in which the bridge bulges out of the recess (3). The switch includes an actuator (8, 9; 26, 27) for effecting flexing of the bridge (6) between the stable states, and a switching element (7, 31, 34) is mounted on the bridge (6) such that movement of the bridge between the stable states moves the switching element between an on position and an off position. According to another design, a microsystem switch (40, 55) has a support (41) defining a recess (42), and an elongate torsion member (44) is mounted on the support (41) bridging the recess (42). A flexible bridge (43, 56) is mounted on the support (41) bridging the recess (42) in a direction substantially perpendicular to the torsion member (44). The bridge (43, 56) is connected to the torsion member (44) at the cross-point thereof so that a first section of the bridge extends between the cross-point and one side of the recess (42) and a second section of the bridge extends between the cross-point and the opposite side of the recess (42). The bridge (43, 56) is shaped so as to hold selectively a first stable state, in which the first section of the bridge bulges into the recess and the second section of the bridge bulges out of the recess, and a second stable state in which this configuration is reversed. A switching element (45) is mounted at the cross-point of the bridge (43, 56) and torsion member (44), and an actuator (46a, 46b; 58a, 58b) is again provided for effecting flexing of the bridge (43, 56) between the stable states. Here, movement of the bridge (43, 56) between the stable states effects twisting of the torsion member (44) and rotation of the switching element (45) between an on position and an off position. Switching devices incorporating these switches, and switching apparatus comprising arrays of such switching devices, are also provided.
Abstract:
In accordance with the present invention, there is provided an apparatus comprising a tape having an information layer on which information is storable in the form of perturbations, an array (10) of probes (11) that in function faces the tape (2) such that the probes scan the surface of the tape, means for selectively forming the perturbations via the probes, means for detecting the presence of the perturbations via the probes, and drive means (20, 25, 40, 42) for moving the tape relative to the array of probes. The apparatus allows to store high data capacities at a small form factor.
Abstract:
A storage device and a method for scanning a storage medium. A storage medium for storing data in the form of marks is scanned by an array of probes for mark detecting purposes in a scanning mode. The storage medium has fields with each field to be scanned by an associated one of the probes. At least one of the fields has marks representing operational data for operating the scanning mode. Scanning parameters are computed from the operational data and the scanning mode is adjusted according to the computed parameters.
Abstract:
Read/write components for AFM-based data storage devices are provided. In particular embodiments, a read/write component (30, 45, 50, 65, 80) comprises lever means (31, 51, 66, 82) and a support structure (32, 52, 67, 81), the lever means being connected to the support structure for substantially pivotal movement. The lever means (31, 51, 66, 82) provides first and second current paths between a pair of electrical supply lines (R, C) on the support structure via which the lever means can be connected in use to power supply means operable in a write mode and a read mode. A write-mode heater (36, 47, 56, 73) is provided on the lever means in the first current path, and a read/write tip (37, 57, 74, 84) is provided on the write-mode heater. A read-mode heater (39, 46, 58, 75, 83) is provided on the lever means in the second current path. Decoupling means (38a, 38b, 40a, 40b, 60, 61, 77a, 77b, 78a, 78b) is arranged to inhibit current flow to the write-mode heater via the first current path in use when the power supply means is operated in the read mode. The component, with separate write and read-mode heaters, can thus be addressed in both the write and read modes via a single pair of supply lines. Other embodiments provide read/write components (100) employing a thermal decoupling mechanism, and read/write components (80) where read-sensing is performed by a proximity sensing arrangement between the lever means and the support structure. Sensing apparatus (115) for atomic force microscopes is also provided where tip movement can be detected via similar proximity sensing arrangements.
Abstract:
Read/write components for AFM-based data storage devices are provided. In particular embodiments, a read/write component (30, 45, 50, 65, 80) comprises lever means (31, 51, 66, 82) and a support structure (32, 52, 67, 81), the lever means being connected to the support structure for substantially pivotal movement. The lever means (31, 51, 66, 82) provides first and second current paths between a pair of electrical supply lines (R, C) on the support structure via which the lever means can be connected in use to power supply means operable in a write mode and a read mode. A write-mode heater (36, 47, 56, 73) is provided on the lever means in the first current path, and a read/write tip (37, 57, 74, 84) is provided on the write-mode heater. A read-mode heater (39, 46, 58, 75, 83) is provided on the lever means in the second current path. Decoupling means (38a, 38b, 40a, 40b, 60, 61, 77a, 77b, 78a, 78b) is arranged to inhibit current flow to the write-mode heater via the first current path in use when the power supply means is operated in the read mode. The component, with separate write and read-mode heaters, can thus be addressed in both the write and read modes via a single pair of supply lines. Other embodiments provide read/write components (100) employing a thermal decoupling mechanism, and read/write components (80) where read-sensing is performed by a proximity sensing arrangement between the lever means and the support structure. Sensing apparatus (115) for atomic force microscopes is also provided where tip movement can be detected via similar proximity sensing arrangements.
Abstract:
Un método para escribir datos y/o leer datos desde lugares de una superficie de medio de almacenamiento a través de una punta, comprendiendo el método: mover la punta (40) entre los lugares de la superficie; y, en cada lugar, aplicar selectivamente energía a la superficie a través de la punta (40) activando un elemento de calentamiento (30) para calentamiento y/o para relectura térmica en un modo por impulsos en que un sensor en voladizo (10) comprende el elemento de calentamiento (30) y la punta (40); y caracterizado por impulsar conjuntamente de manera selectiva a la punta (40) mediante la superficie en un modo por impulsos y en sincronización con la aplicación selectiva de energía.