Abstract:
A method for electrodepositing a coating/free-standing layer on a workpiece in an electrolytic cell includes moving the workpiece and an anode applicator tool having a consumable anode insert relative to each other; anodically dissolving a metal from the insert and cathodically depositing the metal on the workpiece; providing flow of electrolyte solution through the insert to ensure that greater than 90% of the anodic reaction is represented by dissolution of the metal; recirculating collected electrolyte solution exiting the electrolytic cell through the insert; applying an electric current to the electrolytic cell; maintaining a concentration of the anodically dissolved metal within ±25% of each Ampere-hour per liter of electroplating solution; and creating a cathodic electrodeposit on the workpiece which includes the anodically dissolved metal, the chemical composition of the deposit varying by less than 25% in the deposition direction over a selected thickness of up to 25 microns of the deposit.
Abstract:
Metal-coated polymer articles containing structural substantially porosity-free, fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein on polymer substrates, are disclosed. The substantially porosity-free metallic coatings/layers/patches are applied to polymer or polymer composite substrates to provide, enhance or restore vacuum/pressure integrity and fluid sealing functions. Due to the excellent adhesion between the metallic coating and the polymer article satisfactory thermal cycling performance is achieved. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, aerospace and automotive parts and other components exposed to thermal cycling and stress created by erosion and impact damage.
Abstract:
Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness Cr coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial and hydrophobic properties.
Abstract:
Articles including durable and icephobic and/or biocidal polymeric coatings are disclosed. The polymeric coatings can include a bonding layer which may contain a substantially fully cured polymeric resin providing excellent adhesion to metallic or polymer substrates. The polymeric coating further includes an outer surface layer which is smooth, hydrophobic, biocidal and icephobic and, in addition to a substantially fully cured resin, contains silicone comprising additives near the exposed outer surface. The anisotropic polymeric coatings are particularly suited for strong and lightweight parts required in aerospace, automotive and sporting goods applications. A process for making the articles is disclosed as well.
Abstract:
Articles including durable and icephobic polymeric coatings are disclosed. The polymeric coatings include a bonding layer which may contain a substantially fully cured polymeric resin providing excellent adhesion to metallic or polymer substrates. The polymeric coating further includes an outer surface layer which is smooth, hydrophobic and icephobic and, in addition to a substantially fully cured resin, contains silicone comprising additives near the exposed outer surface. The anisotropic polymeric coatings are particularly suited for strong and lightweight parts required in aerospace, automotive and sporting goods applications. A process for making the articles is disclosed as well.
Abstract:
Articles including durable and icephobic and/or biocidal polymeric coatings are disclosed. The polymeric coatings can include a bonding layer which may contain a substantially fully cured polymeric resin providing excellent adhesion to metallic or polymer substrates. The polymeric coating further includes an outer surface layer which is smooth, hydrophobic, biocidal and icephobic and, in addition to a substantially fully cured resin, contains silicone comprising additives near the exposed outer surface. The anisotropic polymeric coatings are particularly suited for strong and lightweight parts required in aerospace, automotive and sporting goods applications. A process for making the articles is disclosed as well.
Abstract:
An apparatus and system for in-situ electropolishing and/or for in-situ electroforming a structural or functional reinforcement layer such as a sleeve of a selected metallic material on the internal surfaces of metallic tubular conduits are described. The apparatus and system can be employed on straight tubes, tube joints to different diameter tubes or face plates, tube elbows and other complex shapes encountered in piping systems. The apparatus includes components which can be independently manipulated and assembled on or near a degraded site and, after secured in place, form an electrolytic cell within the workpiece. The apparatus contains counter-electrodes which can be moved relative to the workpiece surface during the electroplating and/or electropolishing operation to provide flexibility in selecting and employing electropolishing process parameters and electroplating process parameters to design and optimize the surface roughness as well as the size, shape and properties of the electrodeposited reinforcing layer(s).
Abstract:
A method for electrodepositing a coating/free-standing layer on a workpiece in an electrolytic cell includes moving the workpiece and an anode applicator tool having a consumable anode insert relative to each other; anodically dissolving a metal from the insert and cathodically depositing the metal on the workpiece; providing flow of electrolyte solution through the insert to ensure that greater than 90% of the anodic reaction is represented by dissolution of the metal; recirculating collected electrolyte solution exiting the electrolytic cell through the insert; applying an electric current to the electrolytic cell; maintaining a concentration of the anodically dissolved metal within ±25% of each Ampere-hour per liter of electroplating solution; and creating a cathodic electrodeposit on the workpiece which includes the anodically dissolved metal, the chemical composition of the deposit varying by less than 25% in the deposition direction over a selected thickness of up to 25 microns of the deposit.