Abstract:
Embodiments of the invention include a temperature sensing device that includes a base structure that is positioned in proximity to a cavity of an organic substrate, an input transducer coupled to the base structure, and an output transducer coupled to the base structure. The input transducer includes a first piezoelectric material to generate vibrations which are transmitted on the base structure in response to input signals being applied to the input transducer. The output transducer includes a second piezoelectric material to receive the vibrations and to generate output signals which are used to determine a change in ambient temperature.
Abstract:
Embodiments include a waveguide bundle, a dielectric waveguide, and a vehicle. The waveguide bundle includes dielectric waveguides, where each dielectric waveguide has a dielectric core and a conductive coating around the dielectric core. The waveguide bundle also has a power delivery layer formed around the dielectric waveguides, and an insulating jacket enclosing the waveguide bundle. The waveguide bundle may also include the power deliver layer as a braided shield, where the braided shield provides at least one of a DC and an AC power line. The waveguide bundle may further have one of the dielectric waveguides provide a DC ground over their conductive coatings, where the AC power line does not use the braided shield as reference or ground. The waveguide bundle may include that the power delivery layer is separated from the dielectric waveguides by a braided shield, where the power delivery layer is a power delivery braided foil.
Abstract:
Hybrid filters and more particularly filters having acoustic wave resonators (AWRs) and lumped component (LC) resonators and packages therefor are described. In an example, a packaged filter incudes a package substrate, the package substrate having a first side and a second side, the second side opposite the first side. A first acoustic wave resonator (AWR) device is coupled to the package substrate, the first AWR device comprising a resonator. A plurality of inductors is in the package substrate.
Abstract:
An inductor in a device package and a method of forming the inductor in the device package are described. The inductor includes a first conductive layer disposed on a substrate. The inductor also has one or more hybrid magnetic additively manufactured (HMAM) layers disposed over and around the first conductive layer to form one or more via openings over the first conductive layer. The inductor further includes one or more vias disposed into the one or more via openings, wherein the one or more vias are only disposed on the portions of the exposed first conductive layer. The inductor has a dielectric layer disposed over and around the one or more vias, the HMAM layers, and the substrate. The inductor also has a second conductive layer disposed over the one or more vias and the dielectric layer.
Abstract:
Embodiments of the invention include a microelectronic device that includes a plurality of organic dielectric layers and a capacitor formed in-situ with at least one organic dielectric layer of the plurality of organic dielectric layers. The capacitor includes first and second conductive electrodes and an ultra-high-k dielectric layer that is positioned between the first and second conductive electrodes.
Abstract:
In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing increased human perception of haptic feedback systems. For instance, there is disclosed in accordance with one embodiment there is wearable device, having therein: a wearable device case; a plurality of actuators within the wearable device case, each of which to vibrate independently or in combination; in which one surface of each of the plurality of actuators is exposed at a surface of the wearable device case; an elastomer surrounding the sides of each of the plurality of actuators within the wearable device case to hold the actuators in position within the wearable device case; and electrical interconnects from each of the plurality of actuators to internal semiconductor components of the wearable device. Other related embodiments are disclosed.
Abstract:
An apparatus comprises a waveguide including: an elongate waveguide core including a dielectric material, wherein the waveguide core includes at least one space arranged lengthwise along the waveguide core that is void of the dielectric material; and a conductive layer arranged around the waveguide core.
Abstract:
In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing increased human perception of haptic feedback systems. For instance, there is disclosed in accordance with one embodiment there is wearable device, having therein: a wearable device case; a plurality of actuators within the wearable device case, each of which to vibrate independently or in combination; one or more pins attached to each of the plurality of actuators, one end of each of the plurality of pins affixed to the actuators extrudes beyond surface of the wearable device case and is exposed outside of the wearable device case; electrical interconnects from each of the plurality of actuators to internal semiconductor components of the wearable device. Other related embodiments are disclosed.