Abstract:
A communication transmission emulator digitally emulates a plurality of signal impairments created by the transmission components and communication medium in a typical communication system. A variety of linear and non-linear distortion characteristics are impressed on a baseband signal between transmit and receive modems to effect thorough testing and optimization of modem performance without requiring transmission frequency components and/or communication channel. The communication transmission emulator comprises transmission channel transmit modules, receive modules and communication media modules. Transmit and receive modules accepting or outputting analogue or digital signals. The transmission emulator is configurable to allow a simulation of a single channel communication; a simulation of a full duplex communication; a simulation of a common base station receiver with multiple users transmitting and a simulation of a base station transmitter with multiple users receiving, all configurations with or without the communication media emulator module. The communication media modules simulate multipath signal components and distortions for the chosen medium.
Abstract:
The present invention provides a base station architecture that is modular in configuration, lowering the initial cost of implementing a new CDMA telecommunication system for a defined geographical region while allowing for future capacity. The scalable architecture is assembled from a digital base station unit that is configured to support a plurality of simultaneous wireless calls connecting to a conventional public switched telephone network. For initial startup, two base station units are deployed for redundancy in case of a single failure. Additional base station units may be added when the need arises for extra traffic capacity. If sectorization is required, the base station units may be directionally oriented. Coupled to and remote from each base station unit are two amplified antenna modules that contain an omni-directional or an external directional antenna, a high power RF amplifier for transmitted frequencies and a low noise amplifier for received frequencies. A separate power supply module capable of supporting two base station units provides continued service in the event of a mains power outage.
Abstract:
A wireless transmit/receive unit (WTRLJ) 11 uses an oscillator providing accuracy for synchronized communications parameters in an active mode (Fig. 1 , WTRLJ 11), and operates at reduced power during a discontinuous reception (DRX) mode (Fig. 1 WTRU 12). A real time clock (RTC) 28 is used as the frequency standard during the reduced power operation, and a frequency adjustment is effected while the RTC 28 is used as the frequency standard. By effecting the frequency adjustment, the RTC 28 is able to be used as the frequency standard for substantial time periods, thereby reducing power consumption of the WTRU 12 during the DRX mode.
Abstract:
A method and apparatus for dynamically adjusting the impedance between a transmitter's power amplifier (PA) and antenna to efficiently transfer power from the PA to the antenna. The impedance between the PA and the antenna is adjusted based on power level measurements and/or PA direct current (DC) consumption measurements, depending on whether the PA is a linear PA or a switch-mode PA. In another embodiment, a hybrid PA including a first stage linear PA and a second stage switch-mode PA is implemented in a transmitter. The hybrid PA selectively connects the output of the first stage linear PA to one of the input of the second stage switch-mode PA and the output of the hybrid PA, depending on the output power level of the first stage linear PA, the output power level of the hybrid PA, or a requirement indicated by a transmit power control (TPC) command.
Abstract:
A communication system including an amplifier, a receiver, an analog to digital converter (ADC) and an insertion phase variation compensation module. The amplifier receives a communication signal. If the amplifier is enabled, the amplifier amplifies the communication signal and outputs the amplified communication signal to the receiver. If the amplifier is disabled, the amplifier passes the communication signal to the receiver without amplifying it. The receiver outputs an analog complex signal to the ADC. The ADC outputs a digital complex signal to the insertion phase variation compensation module which counteracts the effects of a phase offset intermittently introduced into the communication signal when the amplifier is enabled or disabled.
Abstract:
A first detector receives a received signal and extracts the data signals from the received signal. A hard decision converter converts soft symbols outputted by the first detector into hard symbols. An interference canceller extracts the voice signals from the received signal. A second detector is connected to the output of the interference canceller, and extracts the individual voice signals. The second detector is a different detector type than the first detector.
Abstract:
A wireless transmit/receive unit (WTRU) has multiple receivers with an interface to combine received signals to provided enhanced reception. A control unit selectively controls the powering of the receivers to limit power consumption based on selected parameters.
Abstract:
Method and apparatus for transfer of signals from multiple antennas down to baseband over a common radio frequency (RF) chain. Antenna selection having greater flexibility and applicability to both uplink and downlink wherein priority is given to the antenna receiving a better quality signal. Measurements are taken during each time slot to determine the weighting to be given to the antenna with the better quality signal. Techniques and apparatus are provided to take measurements over a range of intervals from time slots to single symbols, for example, to select the best signal the techniques described herein may be used individual, and in some cases are combined to receive additional benefits in efficiency.
Abstract:
A method and system for automatic gain control (AGC) in a TDD communication system, wherein each time slot of the communication signal contains a preamble in binary phase shift keying (BPSK) format, located at the beginning of the time slot. The channel estimation by the receiver is improved since the preamble allows AGC to quickly estimate the signal strength and adjust the gain accordingly. This permits all data symbols within the data burst, which follows the preamble, to be correctly received, and results in a midamble channel estimate that is much more accurate. It also allows the AGC circuit within the TDD receiver to be greatly simplified.
Abstract:
A wireless transmit/receive unit (WTRU) uses an oscillator providing accuracy for synchronized communications parameters in an active mode, and operates at reduced power during a discontinuous reception (DRX) mode. A real time clock (RTC) is used as the frequency standard during the reduced power operation, and a frequency adjustment is effected while the RTC is used as the frequency standard. By effecting the frequency adjustment, the RTC is able to be used as the frequency standard for substantial time periods, thereby reducing power consumption of the WTRU during the DRX mode.