Abstract:
A method of producing a functional device according to the present invention includes, in this order: the functional solid material precursor layer formation step of applying a functional liquid material onto a base material to form a precursor layer of a functional solid material; the drying step of heating the precursor layer to a first temperature in a range from 80° C. to 250° C. to preliminarily decrease fluidity of the precursor layer; the imprinting step of imprinting the precursor layer that is heated to a second temperature in a range from 80° C. to 300° C. to form an imprinted structure on the precursor layer; and the functional solid material layer formation step of heat treating the precursor layer at a third temperature higher than the second temperature to transform the precursor layer into a functional solid material layer.
Abstract:
A solid-state electronic device according to the present invention includes: an oxide layer (possibly containing inevitable impurities) that is formed by heating, in an atmosphere containing oxygen, a precursor layer obtained from a precursor solution as a start material including both a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) as solutes, the oxide layer consisting of the bismuth (Bi) and the niobium (Nb); wherein the oxide layer is formed by heating at a heating temperature from 520° C. to 650° C.
Abstract:
A method of forming a conductive film, comprising the steps of: applying a composition comprising at least one metal compound selected from the group consisting of carboxylate salt, alkoxide, diketonato and nitrosylcarboxylate salt of a metal selected from among copper, palladium, rhodium, ruthenium, iridium, nickel and bismuth and a solvent to a substrate to form a coating film; and supplying a hydrogen radical to the coating film to carry out a hydrogen radical treatment.
Abstract:
According to the present invention, a method of producing a functional device includes the imprinting step and the functional solid material layer formation step. In the imprinting step, a functional solid material precursor layer obtained from a functional solid material precursor solution as a start material is imprinted so that a first temperature of a heat source for supplying heat to the functional solid material precursor layer is higher than a second temperature of the functional solid material precursor layer in at least part of a time period while a mold for forming an imprinted structure is pressed against the functional solid material precursor layer. In the functional solid material layer formation step, after the imprinting step, the functional solid material precursor layer is heat treated at a third temperature higher than the first temperature in an atmosphere containing oxygen to form a functional solid material layer from the functional solid material precursor layer.
Abstract:
A process for forming an amorphous conductive oxide film, comprising the steps of: applying a composition which comprises (A1) a×y parts by mole of at least one metal compound selected from the group consisting of carboxylate salts, alkoxides, diketonates, nitrate salts and halides of a metal selected from among lanthanoids (excluding cerium), (A2) a×(1−y) parts by mole of at least one metal compound selected from the group consisting of carboxylate salts, alkoxides, diketonates, nitrate salts and halides of a metal selected from among lead, bismuth, nickel, palladium, copper and silver, (B) 1 part by mole of at least one metal compound selected from the group consisting of carboxylate salts, alkoxides, diketonates, nitrate salts, halides, nitrosylcarboxylate salts, nitrosylnitrate salts, nitrosylsulfate salts and nitrosylhalides of a metal selected from among ruthenium, iridium, rhodium and cobalt, and (C) a solvent containing at least one selected from the group consisting of carboxylic acids, alcohols, ketones, diols and glycol ethers to a substrate to form a coating film; and heating the coating film in an oxidizing atmosphere.