Abstract:
The invention provides a dielectric layer having high relative permittivity with low leakage current and excellent flatness. A dielectric layer 30a according to the invention is made of multilayer oxide including a first oxide layer 31 made of oxide consisting of bismuth (Bi) and niobium (Nb) or oxide consisting of bismuth (Bi), zinc (Zn), and niobium (Nb) (possibly including inevitable impurities) and a second oxide layer 32 made of oxide of one type (possibly including inevitable impurities) selected from the group of oxide consisting of lanthanum (La) and tantalum (Ta), oxide consisting of lanthanum (La) and zirconium (Zr), and oxide consisting of strontium (Sr) and tantalum (Ta).
Abstract:
Provided is a ferroelectric gate thin film transistor which includes: a channel layer; a gate electrode layer which controls a conductive state of the channel layer; and a gate insulation layer which is arranged between the channel layer and the gate electrode layer and is formed of a ferroelectric layer. The gate insulation layer (ferroelectric layer) has the structure where a PZT layer and a BLT layer (Pb diffusion preventing layer) are laminated to each other. The channel layer (oxide conductor layer) is arranged on a surface of the gate insulation layer (ferroelectric layer) on a BLT layer (Pb diffusion preventing layer) side. The ferroelectric gate thin film transistor can overcome various drawbacks which may be caused due to the diffusion of Pb atoms into an oxide conductor layer from a PZT layer including a drawback that a transmission characteristic of a ferroelectric gate thin film transistor is liable to be deteriorated (for example, a width of a memory window is liable to become narrow).
Abstract:
A solid-state electronic device according to the present invention includes: an oxide layer (possibly containing inevitable impurities) that is formed by heating, in an atmosphere containing oxygen, a precursor layer obtained from a precursor solution as a start material including both a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) as solutes, the oxide layer consisting of the bismuth (Bi) and the niobium (Nb); wherein the oxide layer is formed by heating at a heating temperature from 520° C. to 650° C.
Abstract:
A method of producing a functional device according to the present invention includes, in this order: the functional solid material precursor layer formation step of applying a functional liquid material onto a base material to form a precursor layer of a functional solid material; the drying step of heating the precursor layer to a first temperature in a range from 80° C. to 250° C. to preliminarily decrease fluidity of the precursor layer; the imprinting step of imprinting the precursor layer that is heated to a second temperature in a range from 80° C. to 300° C. to form an imprinted structure on the precursor layer; and the functional solid material layer formation step of heat treating the precursor layer at a third temperature higher than the second temperature to transform the precursor layer into a functional solid material layer.
Abstract:
A solid-state electronic device according to the present invention includes: an oxide layer (possibly containing inevitable impurities) that is formed by heating, in an atmosphere containing oxygen, a precursor layer obtained from a precursor solution as a start material including both a precursor containing bismuth (Bi) and a precursor containing niobium (Nb) as solutes, the oxide layer consisting of the bismuth (Bi) and the niobium (Nb); wherein the oxide layer is formed by heating at a heating temperature from 520° C. to 650° C.