Abstract:
A plasma processing chamber for processing a substrate to form electronic components thereon is disclosed. The plasma processing chamber includes a plasma-facing component having a plasma-facing surface oriented toward plasma in the plasma processing chamber during processing of the substrate, the plasma-facing component being electrically isolated from a ground terminal. The plasma processing chamber further includes a grounding arrangement coupled to the plasma-facing component, the grounding arrangement including a first resistance circuit disposed in a first current path between the plasma-facing component and the ground terminal. The grounding arrangement further includes a RF filter arrangement disposed in at least one other current path between the plasma-facing component and the ground terminal, wherein a resistance value of the first resistance circuit is selected to substantially eliminate arcing between the plasma and the plasma-facing component during the processing of the substrate.
Abstract:
A plasma processing apparatus for processing a substrate with a plasma is disclosed. The apparatus includes a first RF power source having a first RF frequency, and a process chamber. Further, the apparatus includes a substantially circular antenna operatively coupled to the first RF power source and disposed above a plane defined by the substrate when the substrate is disposed within the process chamber for processing. The substantially circular antenna being configured to induce an electric field inside the process chamber with a first RF energy generated by the first RF power source. The substantially circular antenna including at least a first pair of concentric loops in a first plane and a second pair of concentric loops in a second plane. The first pair of concentric loops and the second pair of concentric loops being substantially identical and symmetrically aligned with one another. The substantially circular antenna forming an azimuthally symmetric plasma inside the process chamber. The apparatus also includes a coupling window disposed between the antenna and the process chamber. The coupling window being configured to allow the passage of the first RF energy from the antenna to the interior of the process chamber. The coupling window having a first layer and a second layer. The second layer being configured to substantially suppress the capacitive coupling formed between the substantially circular antenna and the plasma. The substantially circular antenna and the coupling window working together to produce a substantially uniform process rate across the surface of the substrate.
Abstract:
A method for etching features in a low-k dielectric layer disposed below an organic mask is provided by an embodiment of the invention. Features are etched into the low-k dielectric layer through the organic mask. A fluorocarbon layer is deposited on the low-k dielectric layer. The fluorocarbon layer is cured. The organic mask is stripped.
Abstract:
A robot apparatus for executing a set of service procedures on a plasma processing system including a docking port is disclosed. The apparatus includes a platform and a docking probe coupled to the platform, wherein the docking probe is configured to dock with the docking port. The apparatus also includes a robot arm coupled to the platform, and further configured to substantially perform the set of service procedures, and a tool coupled to the robot arm. The apparatus further includes a computer coupled to the platform, wherein the computer is further configured to execute the set of service procedures, and wherein when the docking probe is docked to the docking port, the set of service procedures is performed by the tool.
Abstract:
An apparatus generating a plasma for removing metal oxide from a substrate is disclosed. The embodiment includes a powered electrode assembly, including a powered electrode, a first dielectric layer, and a first wire mesh disposed between the powered electrode and the first dielectric layer. The embodiment also includes a grounded electrode assembly disposed opposite the powered electrode assembly so as to form a cavity wherein the plasma is generated, the first wire mesh being shielded from the plasma by the first dielectric layer when the plasma is present in the cavity, the cavity having an outlet at one end for providing the plasma to remove the metal oxide.
Abstract:
An antenna arrangement (210) for generating an electric field inside a process chamber (202) through a window (212). Generally, the antenna arrangement (210) comprises an outer loop (610), comprising a first outer loop turn (618) disposed around an antenna axis (614), an inner loop (606), comprising a first inner loop turn (616) disposed around the antenna axis (614), wherein the inner loop (606) is closer to the antenna axis (614) than the outer loop (610) is to the antenna axis (614) in each azimuthal direction, and a radial connector (640) radially electrically connecting the outer loop (610) to the inner loop (606), wherein the radial connector (640) is placed a large distance from the window (212).
Abstract:
A system and method for planarizing a patterned semiconductor substrate (100) includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate (100) having a conductive interconnect material (120) filling multiple of features in the pattern. The conductive interconnect material has an overburden portion (112). The overburden portion has a localized non-uniformity. A bulk portion of the overburden portion is removed to planarize the overburden portion (120). The substantially locally planarized overburden portion is mapped to determine a global non-uniformity. The substantially locally planarized overburden portion is etched to substantially remove the global non-uniformity.
Abstract:
An apparatus and method for adjusting the voltage applied to a Faraday shield (112) of an inductively coupled plasma etching apparatus (101) is provided. An appropriate voltage is easily and variably applied to a Faraday shield such that sputtering of a plasma can be controlled to prevent and mitigate deposition of non-volatile reaction products that adversely affect an etching process. The appropriate voltage for a particular etching process or step is applied to the Faraday shield by simply adjusting a tuning capacitor (204, 210, 208, 206). It is not necessary to mechanically reconfigure the etching apparatus to adjust the Faraday shield voltage.
Abstract:
Methods and systems to optimize wafer placement repeatability in semiconductor manufacturing equipment using a controlled series of wafer movements are provided. In one embodiment, a preliminary station calibration is performed to teach a robot position for each station interfaced to facets of a vacuum transfer module used in semiconductor manufacturing. The method also calibrates the system to obtain compensation parameters that take into account the station where the wafer is to be placed, position of sensors in each facet, and offsets derived from performing extend and retract operations of a robot arm. In another embodiment where the robot includes two arms, the method calibrates the system to compensate for differences derived from using one arm or the other. During manufacturing, the wafers are placed in the different stations using the compensation parameters.
Abstract:
A bevel inspection module for capturing images of a substrate is provided. The module includes a rotational motor, which is attached to a substrate chuck and is configured to rotate the substrate chuck thereby allowing the substrate to revolve. The module further includes a camera and an optic enclosure, which is attached to the camera and is configured to rotate, enabling light to be directed toward the substrate. The camera is mounted from a camera mount, which is configured to enable the camera to rotate on a 180 degree plane allowing the camera to capture images of at least one of a top view, a bottom view, and a side view of the substrate. The module yet also includes a backlight arrangement, which is configured to provide illumination to the substrate, thereby enabling the camera to capture the images, which shows contrast between the substrate and a background.