Abstract:
A method ( 100 ) for scheduling packet data transmissions in a wireless communication system wherein a per-user Priority Function (PF) is calculated as a function of packet delay time of the user. When a given user has a packet delay time violating a threshold, the PF of the user is adjusted accordingly. In one embodiment, a delay function is applied to the PF calculation, wherein the delay function considers the average requested data rate for all users in the active set having pending data and the average data rate of a given user.
Abstract:
Several methods and corresponding apparatus reduce multiple access interference in code division multiple access communications systems (100) through successive interference cancellation techniques. An estimate of reliability of cancellation of a strongest interfering signal is formed from analysis of a pilot signal associated with the strongest signal. The estimate is used to derive a weight that is multiplied by a replica of the strongest signal to provide a weighted replica. The weighted replica is subtracted from a delayed version of the received channel. As a result, interference cancellation is robustly implemented when the strongest signal replica is most likely to be accurate and is not robustly implemented when the strongest signal replica is not likely to be accurate.; This avoids combining a replica of the strongest signal with the received channel when the replica is more likely to contribute additional interference rather than reduce it.
Abstract:
Several methods and corresponding apparatus reduce multiple access interference in code division multiple access communications systems (100) through successive interference cancellation techniques. An estimate of reliability of cancellation of a strongest interfering signal is formed from analysis of a pilot signal associated with the strongest signal. The estimate is used to derive a weight that is multiplied by a replica of the strongest signal to provide a weighted replica. The weighted replica is subtracted from a delayed version of the received channel. As a result, interference cancellation is robustly implemented when the strongest signal replica is most likely to be accurate and is not robustly implemented when the strongest signal replica is not likely to be accurate.; This avoids combining a replica of the strongest signal with the received channel when the replica is more likely to contribute additional interference rather than reduce it.
Abstract:
Method and apparatus for transmitting a signal at a predetermined level of reliability using retransmission of erroneously transmitted frames so as to minimize total transmission energy. The transmitting station evaluates the frame error rate (FER) as a function of energy. Next, the transmitting station determines a combination of initial transmission energies and retransmission energies that will provide the target level of reliability while minimizing the total transmission energy employed in the initial transmission and the retransmissions. The transmitting station transmits a frame with an initial transmission energy. Employing conventional feedback methods the transmitting station is alerted to the occurrence of frame errors at the receiving station. The transmitting station upon notification of a frame error retransmits the frame with an energy determined to minimize the total energy required to transmit the frame with a predetermined level of reliability.
Abstract:
A method and apparatus for selecting a favored transmission slot for communicating non-voice data in conjunction with a voice-data communication. The slot, reflecting a favored power level and transmission rate for transmitting the non-voice data on a supplemental channel, is selected based upon the transmission power levels for voice-data transmitted by a base station to a remote station on a fundamental channel. The favored transmission slot is selected without the remote station messaging information to the base station concerning frequency channel or interference information for the supplemental channel. A method of performing forward-link scheduling in a wireless communication system includes determining the available base station power at the beginning of a frame, predicting the required transmit power at the beginning of the frame for each supplemental channel, determining rates sustainable with the predicted transmit power, dividing by throughput over a recent window to obtain a supplemental channel priority index, and allowing the supplemental channel with the highest priority index to transmit over the next frame.
Abstract:
A method and apparatus for selecting a favored transmission slot for communicating non-voice data in conjunction with a voice-data communication. The slot, reflecting a favored power level and transmission rate for transmitting the non-voice data on a supplemental channel, is selected based upon the transmission power levels for voice-data transmitted by a base station to a remote station on a fundamental channel. The favored transmissi on slot is selected without the remote station messaging information to the bas e station concerning frequency channel or interference information for the supplemental channel.
Abstract:
A method and apparatus for efficient candidate frequency search while initiating a handoff in a code division multiple access communication system. The method includes when the pilot signal is transmitted by the mobile station that is power controlled to a target receive level, the traffic channel power level is increased relative to the pilot channel to improve receiver performance. An improved feature is that the received pilot received at the base station stays the same while the receiver receives extra energy in the redundant traffic symbols received to enhance the probability of correctly decoding the received frame. The base station detects the absence of the mobile station transmitted signal from the frequency of interest. If the base station is aware of the starting time and duration of the absence, it can focus its detection during this predetermined time period. The performance can be improved if the absence of the signal is spread across two frames at the frame boundary.
Abstract:
The invention provides a method and apparatus for reducing transmission signal power or interference of transmitted communication signals suitable for use in a communication system having a base station and a plurality of user stations that exchange communication signals with the base station. An input node receives channel data for transmission on a plurality of channels to the plurality of user stations, wherein the channel data includes pilot symbol data. A processor determines symbol positions in which each of the plurality of user stations expect to find pilot symbols. A transmitter transmits to the plurality of user stations pilot symbols only in symbol positions that the plurality of user stations expect to find pilot symbols, and failing to transmit pilot symbols in other symbol positions.
Abstract:
Techniques to (more accurately) estimate the transmit power available for data service in a future time period (e.g., the next frame). In accordance with one aspect, variation in the available transmit power over time is estimated. A first margin is then computed and used to account for the estimated variation in the available transmit power. The available transmit power at a future time instance (e.g., the beginning of the next frame) is predicted and reduced by the first margin to derive a more accurate estimate of the available transmit power for the next frame. In accordance with another aspect, variation in the required transmit power for a particular data user is estimated and used in scheduling data transmission to this data user. A second margin can be computed and used to account for the estimated variation in the required transmit power for the data user. Whereas the first margin accounts for variation in the (overall) available transmit power, the second margin is specific to the particular link conditions experienced by the data user.
Abstract:
A method for allocating resources in a communication system having a plurality of base stations each serving multiple user stations, the method comprising: receiving, at a first base station, service requests from a plurality of user stations; dynamically allocating resources at the first base station including assigning a transmission rate for transmission of information between the first base station and each user station independently of allocation of resources by other base stations, based on a set of criteria including a set of requirements associated with each service request and interference generated by other base stations in the communication system, wherein the transmission rate assigned to each user station is determined to optimize a sum of all transmission rates assigned by the first base station to the plurality of user stations based on the set of requirements associated with each service request and wherein higher transmission rates are assigned to user stations which are relatively closer to the first base station; and transmitting rate assignment information from the first base station to the plurality of user stations.