Abstract:
A method of approximating delay for postsynaptic potentials includes receiving a postsynaptic potential. The method further includes filtering the postsynaptic potential to approximate a delayed delivery of the postsynaptic potential.
Abstract:
A method for managing a neural network includes monitoring a congestion indication in a neural network. The method further includes modifying a spike distribution based on the monitored congestion indication.
Abstract:
A method for pattern recognition in a spiking neural network robust to initial network conditions includes creating a set of diverse neurons in a first layer to increase a diversity in a set of spike timings. An input corresponding to a pattern plus noise is presented at an input layer and represented as spikes. The spikes are received at the first layer and spikes are produced at the first layer based on the received spikes. The method also includes updating a weight of each synapse between an input layer neuron and an output layer neuron based on a spike timing difference between a spike at the input layer neuron and a spike at the output layer neuron. Further, the method includes classifying a spike pattern represented by a set of inter-spike intervals, regardless of noise in the spike pattern.
Abstract:
Methods and apparatus are provided for implementing delays in an artificial nervous system. Synaptic and/or axonal delays between a post-synaptic artificial neuron and one or more pre-synaptic artificial neurons may be accounted for at the post-synaptic artificial neuron. One example method for managing delay between neurons in an artificial nervous system generally includes receiving, at a post-synaptic artificial neuron, input current values from one or more pre-synaptic artificial neurons; accounting for delays between the one or more pre-synaptic artificial neurons and the post-synaptic artificial neuron at the post-synaptic artificial neuron; and determining a state of the post-synaptic artificial neuron based at least in part on at least a portion of the input current values, according to the accounting.
Abstract:
Certain aspects of the present disclosure provides techniques for a handshaking protocol, and corresponding circuit elements, for an asynchronous network. The techniques utilize a clock-less delay insensitive data encoding scheme. The proposed network may operate correctly regardless of the delay in the interconnecting wires.
Abstract:
A method for managing synapse plasticity in a neural network includes converting a first set of synapses from a plastic synapse type to a fixed synapse type. The method may also include converting a second set of synapses from the fixed synapse type to the plastic synapse type.
Abstract:
Certain aspects of the present disclosure support techniques for time synchronization of spiking neuron models that utilize multiple nodes. According to certain aspects, a neural model (e.g., of an artificial nervous system) may be implemented using a plurality of processing nodes, each processing node implementing a neuron model and communicating via the exchange of spike packets carrying information regarding spike information for artificial neurons. A mechanism may be provided for maintaining relative spike-timing between the processing nodes. In some cases, a mechanism may also be provided to alleviate deadlock conditions between the multiple nodes.
Abstract:
Aspects of the present disclosure provide methods and apparatus for allocating memory in an artificial nervous system simulator implemented in hardware. According to certain aspects, memory resource requirements for one or more components of an artificial nervous system being simulated may be determined and portions of a shared memory pool (which may include on-chip and/or off-chip RAM) may be allocated to the components based on the determination.
Abstract:
Methods and apparatus are provided for inferring and accounting for missing post-synaptic events (e.g., a post-synaptic spike that is not associated with any pre-synaptic spikes) at an artificial neuron and adjusting spike-timing dependent plasticity (STDP) accordingly. One example method generally includes receiving, at an artificial neuron, a plurality of pre-synaptic spikes associated with a synapse, tracking a plurality of post-synaptic spikes output by the artificial neuron, and determining at least one of the post-synaptic spikes is associated with none of the plurality of pre-synaptic spikes. According to certain aspects, determining inferring missing post-synaptic events may be accomplished by using a flag, counter, or other variable that is updated on post-synaptic firings. If this post-ghost variable changes between pre-synaptic-triggered adjustments, then the artificial nervous system can determine there was a missing post-synaptic pairing.