METHOD AND APPARATUS FOR OPTIMIZED REPRESENTATION OF VARIABLES IN NEURAL SYSTEMS
    13.
    发明申请
    METHOD AND APPARATUS FOR OPTIMIZED REPRESENTATION OF VARIABLES IN NEURAL SYSTEMS 审中-公开
    神经系统中变量优化表示的方法与装置

    公开(公告)号:WO2014025619A2

    公开(公告)日:2014-02-13

    申请号:PCT/US2013053290

    申请日:2013-08-01

    Applicant: QUALCOMM INC

    CPC classification number: G06N3/02 G06N3/049 G10L19/038 G10L19/12

    Abstract: Certain aspects of the present disclosure support a technique for optimized representation of variables in neural systems. Bit-allocation for neural signals and parameters in a neural network described in the present disclosure may comprise allocating quantization levels to the neural signals based on at least one measure of sensitivity of a pre-determined performance metric to quantization errors in the neural signals, and allocating bits to the parameters based on the at least one measure of sensitivity of the pre-determined performance metric to quantization errors in the parameters.

    Abstract translation: 本公开的某些方面支持用于神经系统中变量的优化表示的技术。 在本公开中描述的神经网络中的神经信号和参数的位分配可以包括基于对神经信号中的量化误差的预定性能度量的灵敏度的至少一个度量来为神经信号分配量化级别,以及 基于对所述参数中的量化误差的所述预定性能度量的灵敏度的至少一个度量来将比特分配给所述参数。

    INVARIANT OBJECT REPRESENTATION OF IMAGES USING SPIKING NEURAL NETWORKS
    16.
    发明申请
    INVARIANT OBJECT REPRESENTATION OF IMAGES USING SPIKING NEURAL NETWORKS 审中-公开
    使用SPIKING神经网络的图像的不确定对象表示

    公开(公告)号:WO2015148369A3

    公开(公告)日:2015-12-10

    申请号:PCT/US2015021991

    申请日:2015-03-23

    Applicant: QUALCOMM INC

    CPC classification number: G06K9/4623 G06K9/4647 G06K9/6273 G06N3/049 G06N3/10

    Abstract: A method for invariantly representing an object using a spiking neural network includes representing the object by a spike sequence. The method also includes determining a reference feature of the object representation. The method further includes transforming the object representation to a canonical form based on the reference feature.

    Abstract translation: 使用尖峰神经网络不变地表示对象的方法包括通过尖峰序列表示对象。 该方法还包括确定对象表示的参考特征。 该方法还包括基于参考特征将对象表示转换为规范形式。

    DOPPLER EFFECT PROCESSING IN A NEURAL NETWORK MODEL
    17.
    发明申请
    DOPPLER EFFECT PROCESSING IN A NEURAL NETWORK MODEL 审中-公开
    多普勒效应在神经网络模型中的处理

    公开(公告)号:WO2015065850A2

    公开(公告)日:2015-05-07

    申请号:PCT/US2014062257

    申请日:2014-10-24

    Applicant: QUALCOMM INC

    CPC classification number: G06N3/049

    Abstract: A method of frequency discrimination associated with the Doppler effect is presented. The method includes mapping a first signal to a first plurality of frequency bins and a second signal to a second plurality of frequency bins. The first signal and the second signal corresponding to different times. The method also includes firing a first plurality of neurons based on contents of the first plurality of frequency bins and firing a second plurality of neurons based on contents of the second plurality of frequency bins.

    Abstract translation: 介绍了一种与多普勒效应相关的频率鉴别方法。 该方法包括将第一信号映射到第一多个频率仓并将第二信号映射到第二多个频率仓。 第一信号和第二信号对应不同的时间。 该方法还包括基于第一多个频率仓的内容来触发第一多个神经元并且基于第二多个频率仓的内容来触发第二多个神经元。

Patent Agency Ranking