Abstract:
A solid state pressure sensor (35) utilizes a brittle diaphragm (36) made of a material such as silicon, which is mounted between base plates of glass (37, 38), and which deflects in response to pressure. The base plates (37, 38) of glass can have recesses (37A, 37B) formed therein to receive the diaphragm (36) and provide a full support across the diaphragm (36) under overpressure conditions to prevent overstressing the diaphragm (36), or the diaphragm (36) can have such contoured surfaces (45, 46) for forming overpressure stop surfaces against the facing base plate (37, 38). The diaphragm (36) has grooves (43, 44) defining a central portion (41) that deflects, and whereby the grooves (43, 44) will form webs (42) joining the central portion (41) to an outer rim (40) so that the diaphragm (36) acts similarly to a ''free edge'' diaphragm in its deflection characteristics. The grooves (43, 44) defining the webs (42) can have various configurations for achieving the results desired.
Abstract:
A transducer (10) has a first (22) and second (24) sensing diaphragm configured such that a first pressure (P1) is applied to the first diaphragm (22) and a second pressure (P2) is applied to the second diaphragm (24) and wherein both diaphragms (22, 24) are formed on the same substantially flat face of a diaphragm wafer (20). The transducer (10) is configured such that each diaphragm (22, 24) responsive to (P1) or (P2) respectively also affects a fluid in a closed common fluid cavity (56) such that the deflection of the diaphragm (22, 24) is representative of the pressure differential (P1 - P2).
Abstract:
Une cellule capacitive de détection (10) susceptible d'être produite en série utilise un substrat ou base (11) en un matériau isolant rigide, tel que du verre, et un agencement de diaphragme (12, 14, 15) constitué d'un semiconducteur friable. L'agencement de diaphragme (12, 14, 15) et le substrat (11) sont anodiquement connectés. Un évidement très peu profond (20) est formé sur le diaphragme ou sur le substrat pour recevoir une plaque (24) de condensateur déposée. Deux de ces agencements (10) sont connectés et l'ensemble est rempli d'un fluide incompressible afin d'écarter légèrement les diaphragmes (15) des substrats (11). La pression différentielle entre les agencements de diaphragme (12, 14, 15) est captée en détectant les positions relatives des deux diaphragmes (15).
Abstract:
A transducer (10) has a first (22) and second (24) sensing diaphragm configured such that a first pressure (P1) is applied to the first diaphragm (22) and a second pressure (P2) is applied to the second diaphragm (24) and wherein both diaphragms (22, 24) are formed on the same substantially flat face of a diaphragm wafer (20). The transducer (10) is configured such that each diaphragm (22, 24) responsive to (P1) or (P2) respectively also affects a fluid in a closed common fluid cavity (56) such that the deflection of the diaphragm (22, 24) is representative of the pressure differential (P1 - P2).
Abstract:
A capacitive pressure sensor (47, 75, 100, 130, 170, 190) that is fabricated in a batch process affords isolation for the sensing element (12, 102, 134, 183) and leads from the pressure media and provides stress isolation as well. The pressure sensor (47, 75, 100, 130, 170, 190) is made up of a sandwich construction including a silicon wafer (10) which is etched from one side to make cavities (14) in a plurality of desired locations to form deflecting diaphragms (12, 102, 134, 183), one surface of which acts as a capacitor plate. A glass layer (20) is metallized on both sides and has holes drilled in locations that align with the diaphragms formed on the silicon wafer (10). The glass layer (20) is anodically bonded to the wafer to form capacitance gap of a few microns relative to the one surface of each diaphragm (12, 102, 134, 183). The assembly of the metallized glass layer (20) and the silicon wafer (10) is in a preferred form sandwiched between two additional layers (30, 42, 154, 161, 163), and bonded together in a vacuum atmosphere. The four layer sandwich is then cut up into individual sensors (47, 75, 100, 130, 170, 190). The initial assembly can be formed to provide dampening of the diaphragm response times and to minimize the likelihood of false signals at high frequency inputs.
Abstract:
A pressure transducer has a stress isolator layer (18) which permits the sensor (25) to be non-resiliently mounted (hard mounted) to a mounting surface (26) that in turn is subjected to strain. The strain of the mounting surface (26) tends to induce undesired stress in the sensing diaphragm (25) and the present stress isolator layer (18) minimizes the amount of stress that is transferred to the sensing diaphragm (25) to thereby reduce error. The spring (17) preferably comprises a silicon leaf-type spring (17) with or without isolating slots and is used in various combinations of diaphragms that are sensitive to pressure. The deflection of the diaphragm in response to pressure can be measured in any desired known manner such as with strain gauge resistors (32) or through capacitive sensing.
Abstract:
Un transducteur de pression possède une couche (18) d'isolation des contraintes qui permet au détecteur (25) d'être monté de manière non élastique (monté dur) sur une surface de montage (26) qui est à son tour soumise à des déformations. La déformation de la surface de montage (26) tend à induire des contraintes indésirées dans le diaphragme de détection (25) et la couche d'isolement des contraintes (18) réduit au minimum la quantité de contraintes qui est transférée au diaphragme de détection (25) de manière à réduire l'erreur. Le ressort (17) comprend de préférence un ressort du type à lame en silicium (17) avec ou sans fente d'isolement et est utilisé dans différentes combinaisons de diaphragmes qui sont sensibles à une pression. La déflection du diaphragme en réponse à la pression peut être mesurée d'une manière quelconque connue comme par exemple avec des résistances à jauge de contraintes (32) ou par détection capacitive.
Abstract:
Un transducteur (10) possède un premier (22) et un second (24) diaphragmes de détection conçus de sorte qu'une première pression (P1) est appliquée au premier diaphragme (22) et une seconde pression (P2) est appliquée au second diaphragme (24), les deux diaphragmes (22, 24) étant formés sur la même face sensiblement plate d'une gaufre de diaphragme (20). Le transducteur (10) est conçu de sorte que chaque diaphragme (22, 24) sensible aux pressions (P1) ou (P2) respectivement affecte également un fluide dans une cavité de fluide commune fermée (56) de sorte que la déflection du diaphragme (22, 24) est représentative du différentiel de pression (P1-P2).