Abstract:
A solid oxide fuel cell includes an anode layer, a cathode layer, and an electrolyte layer partitioning the anode layer and the cathode layer. The anode layer and the cathode layer are of about the same thickness and have about the same coefficient of thermal expansion (CTE).
Abstract:
An anisotropic coefficient of thermal expansion (CTE) cathode of a solid oxide fuel cell (SOFC) is formed by placing a layer of perovskite powder between two platens, and sintering the layer while applying pressure to the platens, thereby forming the anisotropic CTE cathode. The perovskite can be lanthanum strontium manganite (LSM).
Abstract:
A solid oxide fuel cell electrolyte is fabricated by combining an yttria- stabilized zirconia powder with a- Al2O3 having a d5o particle size in a range of between about 10 nm and about 200 nm and Mn2O3 to form an electrolyte precursor composition, and then sintering the electrolyte precursor composition to thereby form the electrolyte. The a- Al2O3 and Mn2O3 can be present in the electrolyte precursor composition in an amount in a range of between about 0.25 mol% and about 5 mol%. The electrolyte can be a component of a solid oxide fuel cell of the invention.
Abstract translation:通过将氧化钇稳定的氧化锆粉末与d 50粒径在约10nm至约200nm范围内的Al 2 O 3与Mn 2 O 3组合以形成电解质前体组合物来制造固体氧化物燃料电池电解质,然后烧结 电解质前体组合物,从而形成电解质。 a-Al 2 O 3和Mn 2 O 3可以以约0.25mol%至约5mol%的量存在于电解质前体组合物中。 电解质可以是本发明的固体氧化物燃料电池的组分。
Abstract:
A semiconductor processing component includes a substrate and a layer overlying the substrate. The layer has a composition ReA y O 1.5+2y , wherein Re is Y, La, a Lanthanoid series element, or a combination thereof, A is (Si 1-a Ge a ), 0.25 y 1.2, and 0 a 1.
Abstract translation:半导体处理部件包括衬底和覆盖衬底的层。 该层具有组成,其中Re是Y,La,镧系元素,或它们的组合,A是(Si < 1-a sub> a sub>),0.25y 1.2和0 a 1。
Abstract:
Various semiconductor processing components and methods for forming same are disclosed. In one embodiment a semiconductor processing component is formed of SiC, and an outer surface portion of the component has a surface impurity level that is not greater than 10 times a bulk impurity level. In another embodiment a method for treating a semiconductor processing component includes exposing the component to a halogen gas at an elevated temperature, oxidizing the component to form an oxide layer, and removing the oxide layer.
Abstract:
A solid oxide fuel cell (SOFC) includes a plurality of sub-cells. Each su b- cell includes a first electrode in fluid communication with a source of o xygen gas, a second electrode in fluid communication with a source of a fuel gas, and a solid electrolyte between the first electrode and the second ele ctrode. The SOFC further includes an interconnect between the sub-cells. In one embodiment, the SOFC has a first surface in contact with the first elect rode of each sub-cell and a second surface that is in contact with the secon d electrode of each sub-cell; and the interconnect consists essentially of a doped M-titanate based perovskite, wherein M is an alkaline earth metal. In another embodiment, the interconnect includes a fist layer in contact with the first electrode of each sub-cell, and a second layer in contact with the second electrode of each sub-cell. The first layer includes an electrically conductive material selected from the group consisting of an metal, a metal alloy and1 a mixture thereof. The second layer includes a doped M-titanate based perovskite, wherein M is an alkaline earth metal. A solid oxide fuel c ell described above is formed by connecting each of the sub-cells with an in terconnect described above.
Abstract:
Un método para formar un artículo de celda combustible de un óxido sólido (SOFC), que comprende: formar una celda unitaria de SOFC (100) que comprende: una capa no tratada de electrolito (101) que tiene una temperatura de sinterización del electrolito, una capa no tratada de interconexión (107) que tiene una temperatura de sinterización de la capa de interconexión, y una primera capa no tratada de electrodo (103) dispuesta entre la capa no tratada de electrolito (101) y la capa no tratada de interconexión (107), teniendo la primera capa no tratada de electrodo (103) una primera temperatura de sinterización del electrodo, y sinterizar la celda unitaria de SOFC (100) mediante un proceso simple de sinterización libre, para formar una celda unitaria de SOFC (100), en el que: la sinterización se realiza a una temperatura de sinterización inferior a la primera temperatura de sinterización del electrodo, superior a la temperatura de sinterización del electrolito y superior a la temperatura de sinterización de la material de interconexión, y se forman uniones por difusión entre los componentes de la capa de interconexión y la primera capa de electrodo.
Abstract:
A method is disclosed for forming a silicon carbide component. The method calls for providing a preform, including carbon, purifying the preform to remove impurities to form a purified preform, and exposing the purified preform to a molten infiltrant which includes silicon. According to the foregoing method, the molten infiltrant reacts with the carbon to form silicon carbide. The silicon carbide component formed according to this method may be particularly suitable for use in semiconductor fabrication processes, as a semiconductor processing component.
Abstract:
An interconnect material is formed by combining a lanthanum-doped strontium titanate with an aliovalent transition metal to form a precursor composition and sintering the precursor composition to form the interconnect material. The aliovalent transition metal can be an electron-acceptor dopant, such as manganese, cobalt, nickel or iron, or the aliovalent transition metal can be an electron-donor dopant, such as niobium or tungsten. A solid oxide fuel cell, or a strontium titanate varistor, or a strontium titanate capacitor can include the interconnect material that includes a lanthanum-doped strontium titanate that is further doped with an aliovalent transition metal.