Abstract:
In accordance with the invention, there are electrocaloric devices, pyroelectric devices and methods of forming them. A device which can be a pyroelectric energy generator or an electrocaloric cooling device, can include a first reservoir at a first temperature and a second reservoir at a second temperature, wherein the second temperature is higher than the first temperature. The device can also include a plurality of liquid crystal thermal switches disposed between the first reservoir and the second reservoir and one or more active layers disposed between the first reservoir and the second reservoir, such that each of the one or more active layers is sandwiched between two liquid crystal thermal switches. The device can further include one or more power supplies to apply voltage to the plurality of liquid crystal thermal switches and the one or more the active layers.
Abstract:
Symmetric quantum dots are embedded in quantum wells. The symmetry is achieved by using slightly off-axis substrates and/or overpressure during the quantum dot growth. The quantum dot structure can be used in a variety of applications, including semiconductor lasers.
Abstract:
Quantum dot active region structures are disclosed. In a preferred embodiment, the distribution in dot size and the sequence of optical transition energy values associated with the quantum confined states of the dots are selected to facilitate forming a continuous optical gain spectrum over an extended wavelength range. In one embodiment, the quantum dots are self-assembled quantum dots with a length-to-width ratio of at least three along the growth plane. In one embodiment, the quantum dots are formed in quantum wells for improved carrier confinement. In other embodiments, the quantum dots are used as the active region in laser devices, including tunable lasers and monolithic multi-wavelength laser arrays.
Abstract:
Quantum dot active region structures are disclosed. In a preferred embodiment, the distribution in dot size and the sequence of optical transition energy values associated with the quantum confined states of the dots are selected to facilitate forming a continuous optical gain spectrum over an extended wavelength range. In one embodiment, the quantum dots are self-assembled quantum dots with a length-to-width ratio of at least three along the growth plane. In one embodiment, the quantum dots are formed in quantum wells for improved carrier confinement. In other embodiments, the quantum dots are used as the active region in laser devices, including tunable lasers and monolithic multi-wavelength laser arrays.
Abstract:
A quantum dot active region is disclosed in which quantum dot layers are formed using a self-assembled growth technique. In one embodiment, growth parameters are selected to control the dot density and dot size distribution to achieve desired optical gain spectrum characteristics. In one embodiment, the distribution in dot size and the sequence of optical transition energy values associated with the quantum confined states of the dots are selected to facilitate forming a continuous optical gain spectrum over an extended wavelength range. In another embodiment, the optical gain is selected to increase the saturated ground state gain for wavelengths of 1260 nanometers and greater. In other embodiments, the quantum dots are used as the active region in laser devices, including tunable lasers and monolithic multi-wavelength laser arrays.