Abstract:
A wafer-level packaging, comprising: a first semiconductor body integrating a MEMS structure; a second semiconductor body, including a surface electrical-contact region and an ASIC coupled to the MEMS structure and to said electrical-contact region; a first coating layer, made of resin, which englobes and protects the first body, the second body, and the electrical-contact region; at least one first conductive through via, which extends through the first coating layer in an area corresponding, and electrically coupled, to the first electrical-contact region; an electrical-contact pad, which extends over the first coating layer, electrically coupled to the first conductive through via; a third semiconductor body, integrating an electronic circuit, glued on the first coating layer; a second coating layer, made of resin, which englobes and protects the third body; at least one second conductive through via, which extends completely through the second coating layer in an area corresponding, and electrically coupled, to the electrical-contact pad; and a further electrical-contact pad electrically coupled to the second conductive through via.
Abstract:
An electronic module includes a first die of semiconductor material including a first reflector, a second die of semiconductor material including a second reflector, and a frame including a first supporting portion and a second supporting portion parallel to one another. The first and second dies are carried, respectively, by the first and second supporting portions and are respectively arranged so that the first reflector faces the second supporting portion and the second reflector faces the first supporting portion. An incoming light beam impinges upon the first reflector and is reflected on the second reflector so as to be supplied at output from the electronic module.
Abstract:
A photonic integrated circuit chip includes vertical grating couplers defined in a first layer. Second insulating layers overlie the vertical grating coupler and an interconnection structure with metal levels is embedded in the second insulating layers. A cavity extends in depth through the second insulating layers all the way to an intermediate level between the couplers and the metal level closest to the couplers. The cavity has lateral dimensions such that the cavity is capable of receiving a block for holding an array of optical fibers intended to be optically coupled to the couplers.
Abstract:
An embodiment apparatus comprises an optically transparent substrate having first and second surfaces; a piezoelectric membrane, arranged at the first surface, that oscillates in response to a light beam propagated through the substrate; at least one reflective facet facing the substrate and arranged at the piezoelectric membrane; and an optical element receiving the light beam at an input end and guiding the light beam towards an output end coupled to the second surface. The optical element incorporates a light focusing path focusing the light beam at a focal point at the piezoelectric membrane, and at least one light collimating path collimating the light beam onto the at least one reflective facet. The optical element guides light reflected from the at least one reflective facet to the input end, the reflected light indicating a position of the optical element with respect to the focal point.
Abstract:
A method of testing a photonic device includes providing a plurality of optical test signals at respective inputs of a first plurality of inputs of an optical input circuit located on a substrate, combining the plurality of optical test signals into a combined optical test signal at an output of the optical input circuit, transmitting the combined optical test signal through the output to an input waveguide of an optical device under test, the optical device under test being located on the substrate, and measuring a response of the optical device under test to the combined optical test signal. Each of the plurality of optical test signals comprises a respective dominant wavelength of a plurality of dominant wavelengths.
Abstract:
A method includes providing a semiconductor body comprising a surface with a recessed portion therein. The recessed portion includes a bottom surface. Optical waveguide cores in a first array of optical waveguide cores extend side-by-side at the bottom surface. The method further includes providing a second array of optical waveguide cores over the first array of optical waveguide cores. Optical waveguide cores in the second array of optical waveguide cores extend side-by-side. Each optical waveguide core in the second array of optical waveguide cores is in an adiabatic coupling relationship with a corresponding optical waveguide core in the first array of optical waveguide cores. The method also includes applying an optical waveguide cladding material over the second array of optical waveguide cores.
Abstract:
A semiconductor chip provides an optical medium for light propagation. The semiconductor chip includes a chip surface with an outer perimeter and a cavity in the chip surface. The cavity includes a peripheral wall and a bottom surface surrounded by the peripheral wall, the bottom surface adiabatically couplable to an optical waveguide. The cavity is located at an area of the chip surface spaced from the outer perimeter thereof.
Abstract:
A microelectromechanical device includes: a substrate; a semiconductor die, bonded to the substrate and incorporating a microstructure; an adhesive film layer between the die and the substrate; and a protective layer between the die and the adhesive film layer. The protective layer has apertures, and the adhesive film layer adheres to the die through the apertures of the protective layer.
Abstract:
A photonic integrated circuit chip includes vertical grating couplers defined in a first layer. Second insulating layers overlie the vertical grating coupler and an interconnection structure with metal levels is embedded in the second insulating layers. A cavity extends in depth through the second insulating layers all the way to an intermediate level between the couplers and the metal level closest to the couplers. The cavity has lateral dimensions such that the cavity is capable of receiving a block for holding an array of optical fibers intended to be optically coupled to the couplers.
Abstract:
An embodiment apparatus comprises an optically transparent substrate having first and second surfaces; a piezoelectric membrane, arranged at the first surface, that oscillates in response to a light beam propagated through the substrate; at least one reflective facet facing the substrate and arranged at the piezoelectric membrane; and an optical element receiving the light beam at an input end and guiding the light beam towards an output end coupled to the second surface. The optical element incorporates a light focusing path focusing the light beam at a focal point at the piezoelectric membrane, and at least one light collimating path collimating the light beam onto the at least one reflective facet. The optical element guides light reflected from the at least one reflective facet to the input end, the reflected light indicating a position of the optical element with respect to the focal point.