Abstract:
The invention described forms improved ferroelectric (or pyroelectric) layer by adding lead to an original perovskite layer having an original ferroelectric (or pyroelectric) critical grain size, then forming a layer of the lead enhanced perovskite layer having an average grain size less than the original ferroelectric (or pyroelectric) critical grain size whereby the remanent polarization (or pyroelectric figure of merit) of the layer is substantially greater than the remanent polarization (or pyroelectric figure of merit) of the original perovskite layer with an average grain size similar to the average grain size of the layer. The critical ferroelectric (or pyroelectric) grain size, as used herein, means the largest grain size such that the remanent polarization (or pyroelectric figure of merit) starts to rapidly decrease with decreasing grain sizes. Preferably, n-type lead enhanced perovskite layer is doped with one or more acceptor dopants whereby the resistivity is substantially increased. Preferably, p-type lead enhanced perovskite layer is doped with one or more donor dopants whereby the resistivity is substantially increased. Preferably, the original perovskite layer has a chemical composition ABO 3 , where A is one or more monovalent, divalent or trivalent elements, and B is one or more pentavalent, tetravalent, trivalent or divalent elements. Structures containing an improved ferroelectric (or pyroelectric) layer include a layer of lead enhanced perovskite layer with average grain size less than the original ferroelectric (or pyroelectric) critical grain size formed on the surface of a substrate. Other structures include such a layer of lead enhanced layer interposed between two electrically conducting layers.
Abstract:
The invention described forms improved ferroelectric (or pyroelectric) material by doping an intrinsic perovskite material having an intrinsic ferroelectric (or pyroelectric) critical grain size with one or more donor dopants, then forming a layer of the donor doped perovskite material having an average grain size less than the intrinsic ferroelectric (or pyroelectric) critical grain size whereby the remanent polarization (or pyroelectric figure of merit) of the layer is substantially greater than the remanent polarization (or pyroelectric figure of merit) of the intrinsic perovskite material with an average grain size similar to the average grain size of the layer. The critical ferroelectric (or pyroelectric) grain size, as used herein, means the largest grain size such that the remanent polarization (or pyroelectric figure of merit) starts to rapidly decrease with decreasing grain sizes. Preferably, the donor doped perovskite material is further doped with one or more acceptor dopants to form a donor-acceptor doped perovskite material whereby the resistivity is substantially increased. Preferably, the intrinsic perovskite material has a chemical composition ABO₃, where A is one or more monovalent, divalent or trivalent elements, and B is one or more pentavalent, tetravalent, trivalent or divalent elements. Structures containing an improved ferroelectric (or pyroelectric) material include a layer of donor doped perovskite material with average grain size less than the intrinsic ferroelectric (or pyroelectric) critical grain size formed on the surface of a substrate. Other structures include such a layer of donor doped material interposed between two electrically conducting layers.
Abstract:
Electrode assembly (36) may comprise a first thin film electrode (52), a dielectric element (50), and a second thin film electrode (54). The first thin film electrode (52) may comprise a solid solution of at least two components. The dielectric element (50) may be in electrical communication with the first thin film electrode (52). The second thin film electrode (54) may be in electrical communication with the dielectric element (50) opposite the first thin film electrode (52).
Abstract:
An array of thermal sensor elements (16) is formed from a pyroelectric substrate (46) having an infrared absorber and common electrode assembly (18) attached thereto. A first layer of metal contacts (60) is formed to define masked (61) and unmasked (68) regions of the substrate (46). A second layer of metal contacts (62) is formed on the first layer of contacts (60). A radiation etch mask layer (66) is formed to encapsulate the exposed portions of the second layer of contacts (62). A dry-etch mask layer (74) is formed to encapsulate the exposed portions of the first layer of contacts (60) and radiation etch mask layer (66). An initial portion of each unmasked region (68) is etched using a dry-etch process. The remaining portions of the unmasked regions (68) are exposed to an etchant (70) and irradiated with electromagnetic energy to substantially increase the reactivity between the remaining portions and the etchant (70). During such irradiation, the etchant (70) etches the remaining portions substantially faster than the first layer of contacts (60) and the radiation etch mask layer (66).
Abstract:
A hybrid thermal imaging system (20, 120) often includes a focal plane array (30, 130), a thermal isolation structure (50, 150) and an integrated circuit substrate (60, 160). The focal plane array (30, 130) includes thermal sensitive elements (42, 142) formed from a pyroelectric film layer (82), such as barium strontium titanate (BST). One side of the thermal sensitive elements (42, 142) may be coupled to a contact pad (62, 162) disposed on the integrated circuit substrate (60, 160) through a mesa strip conductor (56, 150) of the thermal isolation structure (50, 150). The other side of the thermal sensitive elements (42, 142) may be coupled to an electrode (36, 136). The various components of the focal plane array (30, 130) may be fabricated from multiple heterogenous layers (74, 34, 36, 82, 84) formed on a carrier substrate (70).
Abstract:
A metal oxide substrate (e.g. barium strontium titanate 34 ) is immersed in a liquid ambient (e.g. 12 molar concentration hydrochloric acid 30 ) and illuminated with radiation (e.g. collimated visible/ultraviolet radiation 24 ) produced by a radiation source (e.g. a 200 Watt mercury xenon arc lamp 20 ). A window 26 which is substantially transparent to the collimated radiation 24 allows the radiated energy to reach the metal oxide substrate 34 . An etch mask 32 may be positioned between the radiation source 20 and the substrate 34 . The metal oxide substrate 34 and liquid ambient 30 are maintained at a nominal temperature (e.g. 25 °C). Without illumination, the metal oxide is not appreciably etched by the liquid ambient. Upon illumination the etch rate is substantially increased.
Abstract:
A pyroelectric material (13) which operates as a capacitor and thermally driven voltage or current source and rests over a thermally insulating aerogel (5) is disposed over an integrated circuit (3) having pads or the like on the surface thereof of standard type for making connection to an external electrically conductive element. The aerogel is a highly thermally insulating, extremely low mass material on the surface of the integrated circuit with integrated circuit connection areas thereon. The preferred aerogel is a layer of glass which is from about 90 to about 99.8% porous with interconnecting porosity in the form of a rigid foam. Vias (7) are etched through the thermally insulating layer for electrical interconnection between the detector to be formed and the integrated circuit. Two contacts per pixel in the form of an electrically conductive, infrared frequency reflecting layer (11) are deposited upon the insulating layer, one such contact connected to the integrated circuit through the via and the second such contact connected to a bus or another via shared by several pixels. The pyroelectric detector material, which is sufficiently thin to permit a sufficient amount of the infrared frequency radiations impinging thereon to pass therethrough to the reflecting layer therebelow, is deposited upon and between the electrodes. The detector is preferably a ferroelectric, preferably lead lanthanum zirconate titanate. Finally, a top semi-transparent electrically conductive metal layer (15), preferably of nickel, is deposited upon the pyroelectric material.
Abstract:
Electrode assembly (36) may comprise a first thin film electrode (52), a dielectric element (50), and a second thin film electrode (54). The first thin film electrode (52) may comprise a solid solution of at least two components. The dielectric element (50) may be in electrical communication with the first thin film electrode (52). The second thin film electrode (54) may be in electrical communication with the dielectric element (50) opposite the first thin film electrode (52).
Abstract:
An array of thermal sensor elements (16) is formed from a pyroelectric substrate (46) having an infrared absorber and common electrode assembly (18) attached thereto. A first layer of metal contacts (60) is formed to define masked (61) and unmasked (68) regions of the substrate (46). A second layer of metal contacts (62) is formed on the first layer of contacts (60). A radiation etch mask layer (66) is formed to encapsulate the exposed portions of the second layer of contacts (62). A dry-etch mask layer (74) is formed to encapsulate the exposed portions of the first layer of contacts (60) and radiation etch mask layer (66). An initial portion of each unmasked region (68) is etched using a dry-etch process. The remaining portions of the unmasked regions (68) are exposed to an etchant (70) and irradiated with electromagnetic energy to substantially increase the reactivity between the remaining portions and the etchant (70). During such irradiation, the etchant (70) etches the remaining portions substantially faster than the first layer of contacts (60) and the radiation etch mask layer (66).