Abstract:
A lane departure prevention apparatus (17) has: a departure preventing device (172) for preventing a vehicle (1) from departing from a driving lane by controlling at least one of a steering apparatus (142) and a braking apparatus (13) selected on the basis of a state of the vehicle, when it is determined that the vehicle may depart from the driving lane; and a determining device for determining whether or not an abnormality condition that it is difficult for a person to normally drive the vehicle is satisfied, the departure preventing device prevents the vehicle from departing from the driving lane by controlling the braking apparatus even if the state of the vehicle is not a predetermined state in which the departure preventing device should prevent the vehicle from departing from the driving lane by controlling the braking apparatus, when it is determined that the abnormality condition is satisfied.
Abstract:
A deflection control apparatus is configured to perform a deflection control in which a subject vehicle is deflected by a braking force difference between left and right wheels. The deflection control apparatus is provided with a releaser configured to release the deflection control if a steering operation, which is an operation of deflecting the subject vehicle in a direction opposite to a direction in which the subject vehicle is deflected by the deflection control, is detected during the deflection control. When releasing the deflection control, the releaser is configured to reduce a controlled variable over a predetermined time, which is shorter than a fall time of the controlled variable when the deflection control is ended without being released, and which becomes longer, as the controlled variable increases when the steering operation is detected.
Abstract:
A brake control device includes: a brake force generator of each wheel configured to generate a brake force according to a brake fluid pressure supplied from a fluid pressure channel; a pressurizer configured to pressurize a brake fluid and send the pressurized brake fluid to the fluid pressure channel; and a brake controller configured to reduce a pressurizing amount of the brake fluid pressure supplied to the fluid pressure channel or reduce the pressurizing amount to 0 before the collision of the own vehicle in a state where the possibility of collision of the own vehicle has been detected or after the collision, when the pressurizer has pressurized the brake fluid by the detection of the possibility of the collision and the pressurized brake fluid pressure has been supplied to the fluid pressure channel.
Abstract:
A vehicle control apparatus is mounted on a vehicle, which includes an engine and a motor configured to start the engine. The vehicle control apparatus is provided with: a first controller programmed to perform a departure prevention control, which is to prevent the vehicle from departing from a driving lane, when the vehicle is about to depart from the driving lane; and a second controller programmed to perform an automatic stop control, which is to automatically stop the engine on condition that a predetermined stop condition is satisfied, and which is to operate the motor and to restart the engine on condition that a predetermined start condition is satisfied after the engine is automatically stopped. The first controller is programmed to prohibit a start of an automatic stop of the engine by the automatic stop control, when the vehicle is about to depart from the driving lane.
Abstract:
A deflection control apparatus is provided with: a determinator configured to determine whether or not a vehicle is about to depart from a driving lane; and a controller programmed to perform a deflection control for controlling a braking apparatus to supply a fluid pressure to at least one of brake mechanisms corresponding to a front wheel and a rear wheel on a side opposite to a departure direction of the vehicle. The controller is programmed to control the braking apparatus to supply the fluid pressure to the brake mechanism that is close to a fluid pressure source, out of the brake mechanisms corresponding to the front wheel and the rear wheel on the opposite side, on condition that a motion state corresponds to a regular-use area of the braking apparatus, if it is determined that the vehicle is about to depart from the driving lane.
Abstract:
A lane keep assist device is configured to perform lane keep assist control for making a host vehicle travel along a lane, and preventing the host vehicle from departing from the lane. The lane keep assist device includes an electronic control device configured to detect presence or absence of another vehicle, present in a vicinity of the host vehicle, which have a gradual decrease in a distance from the host vehicle, and when the other vehicle is detected, the electronic control device configured to set virtual line extending along front-rear direction of the detected other vehicle at position away by first predetermined distance in right-left direction of the other vehicle from lateral side of the detected other vehicle, and to specify the lane based on the set virtual line to perform the lane keep assist control.
Abstract:
A lane departure suppressing apparatus is provided with: a supporter configured to perform departure suppression support for suppressing departure of a vehicle from a driving lane on which the vehicle is currently traveling; a detector configured to detect an adjacent area adjacent to the driving lane; a calculator configured to calculate an adjacent margin width, which is width of an area in which the vehicle can perform an avoidance action, out of the adjacent area; and a controller configured to control the supporter to increase intensity of the departure suppression support as the avoidance margin width becomes smaller.
Abstract:
A vehicle control apparatus is provided with: a controller (i) configured to set first brake fluid pressure associated with wheels on one of left and right sides out of a plurality of wheels to be higher than second brake fluid pressure associated with wheels on the other side in order to turn a vehicle in one direction, and configured (ii) to then increase the second brake fluid pressure by using a fluid pressure difference between the first brake fluid pressure and the second brake fluid pressure, and (iii) to set the first brake fluid pressure to be lower than the second brake fluid pressure while holding the second brake fluid pressure in order to turn the vehicle in another direction, which is different from the one direction.
Abstract:
A vehicle movement state determination device includes: a yaw rate determination unit configured to determine a yaw rate based on at least one of a detection yaw rate detected by a yaw rate sensor and a calculation yaw rate calculated by a yaw rate calculation unit; and a yaw rate reliability determination unit configured to determine whether a reliability of the detection yaw rate is low. The yaw rate determination unit determines the detection yaw rate as the yaw rate at the time the yaw rate reliability determination unit does not determine that the reliability of the detection yaw rate is low, and determines the yaw rate based on the calculation yaw rate at the time the yaw rate reliability determination unit determines that the reliability of the detection yaw rate is low.
Abstract:
An approaching vehicle detection apparatus includes: a sound information detection unit configured to detect sound information around an own vehicle; a sound source detection unit configured to detect a sound source around the own vehicle based on the detected sound information; an approaching vehicle determination unit configured to determine whether the sound source is a vehicle approaching the own vehicle; and a vehicle state changing unit configured to change a vehicle state of the own vehicle to a vehicle state where the own vehicle sound is able to be suppressed when the own vehicle sound generated from the own vehicle is able to be suppressed by changing the vehicle state of the own vehicle.