Abstract:
A method for manufacturing a micromechanical diaphragm structure having access from the rear of the substrate includes: n-doping at least one contiguous lattice-type area of a p-doped silicon substrate surface; porously etching a substrate area beneath the n-doped lattice structure; producing a cavity in this substrate area beneath the n-doped lattice structure; growing a first monocrystalline silicon epitaxial layer on the n-doped lattice structure; at least one opening in the n-doped lattice structure being dimensioned in such a way that it is not closed by the growing first epitaxial layer but instead forms an access opening to the cavity; an oxide layer being created on the cavity wall; a rear access to the cavity being created, the oxide layer on the cavity wall acting as an etch stop layer; and the oxide layer being removed in the area of the cavity.
Abstract:
In order to provide a microcontroller and an addressing method which are distinguished by a lower storage requirement and a higher execution speed than previously known when addressing N-bit address spaces, the address length N of the N-bit address word being greater than the address length of a standard set of instruction or of equivalents of other sets of instructions of the microcontroller, it is provided that the microcontroller (10) has at least one status bit (12) by means of which a writing and/or reading of N-bit address words by at least one standard instruction of the microcontroller (10) can be forced, and the at least one status bit (12) of a microcontroller (10) is set and as a a result a writing and/or reading of N-bit address words by means of at least one standard instruction of the microcontroller (10) is forced.
Abstract:
A data carrier is disclosed. The data carrier includes a data processing unit and at least one contactless interface via which the data processing unit can be coupled to a read/write apparatus in order to exchange data signals and to take up electrical energy for the operation of the data processing unit; the data processing unit is constructed at least mainly while using at least substantially asynchronously operating logic components (asynchronous logic). The data carrier according to the invention, such as a chip card, makes optimum use of the energy applied thereto and is at the same time protected against the tapping of the signal processing steps to be executed therein.
Abstract:
A simple and economical method for manufacturing very thin capped MEMS components. In the method, a large number of MEMS units are produced on a component wafer. A capping wafer is then mounted on the component wafer, so that each MEMS unit is provided with a capping structure. Finally, the MEMS units capped in this way are separated to form MEMS components. A diaphragm layer is formed in a surface of the capping wafer by using a surface micromechanical method to produce at least one cavern underneath the diaphragm layer, support points being formed that connect the diaphragm layer to the substrate underneath the cavern. The capping wafer structured in this way is mounted on the component wafer in flip chip technology, so that the MEMS units of the component wafer are capped by the diaphragm layer. The support points are then cut through in order to remove the substrate.
Abstract:
A process for manufacturing a component is described. In a first manufacturing step a base structure having a substrate, a diaphragm, and a cavern region is provided. The diaphragm is oriented substantially parallel to a main plane of extension of the substrate. The cavern region is situated between the substrate and the diaphragm, and has an access opening. In a second manufacturing step, a first conductive layer is provided at least partially in the cavern region, in particular on a second side of the diaphragm facing the substrate, perpendicularly to the main plane of extension.