Abstract:
A shot tube includes an inner bore for delivering molten material into a die-cast mold. The shot tube has an outer peripheral surface with at least one surface for receiving a locking member to lock the shot tube into an aperture in a fixed mold portion and an alignment structure for properly aligning the shot tube in the fixed mold portion. An opening receives molten material into the inner bore. A die-cast machine is also disclosed.
Abstract:
An investment casting core includes a mullite-containing core body. The body can be made by providing a mullite-containing powder, forming the powder into a green body, and sintering the green body to form the mullite-containing core body.
Abstract:
A directional solidification apparatus includes a mold heating chamber, a solidification chamber, and a gas source. The solidification chamber is adjacent the mold heating chamber for solidifying molten metal formed from an air melt allow system as a cast body as the metal is withdrawn from the mold heating chamber. The gas sources is in fluid communication with the mold heating chamber for providing a pressurized atmosphere for directionally solidifying metal as cast body having single crystal or multi-crystal columnar micro structure.
Abstract:
A method for desulfurizing a metal alloy comprises heating the metal alloy to a molten state. A gaseous desulfurizing compound is bubbled through the molten alloy to form a solid sulfur-containing waste phase and a molten reduced-sulfur alloy phase. The solid waste phase and the molten reduced-sulfur alloy phase are separated. The gaseous desulfurizing compound includes a constituent element selected from the group: alkali metals, alkaline earth metals, and rare earth metals.
Abstract:
An article (50; 100) has a metallic substrate (22), a bondcoat (30) atop the substrate, and a thermal barrier coating (28; 27, 28) atop the bondcoat. The thermal barrier coating or a layer thereof comprises didymium oxide and zirconia.
Abstract:
A thermal barrier coating for a turbine engine component contains neodymia, optionally alumina, and zirconia. The thermal barrier coating has resistance to CMAS attack and a low thermal conductivity.