Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A plated polymer component is disclosed. The plated polymer component may comprise a polymer support, a metal plating deposited on a surface of the polymer support, and at least one flame-retardant additive included in the polymer support. In another aspect, the plated polymer component may comprise a polymer substrate, a metal plating deposited on a surface of the polymer substrate, and a temperature-indicating coating applied to at least one of a surface of the metal plating and a surface of the polymer substrate.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A composite laminate component is disclosed. The composite laminate component may comprise a composite laminate including a plurality of sub-laminates, and a metallic layer encapsulating one or more of the sub-laminates. The sub-laminates may be joined by a bond between the metallic layers.
Abstract:
An industrial product comprising a polymer substrate formed in a shape of the industrial product, and a metallic plating layer plated on at least one surface of the industrial product is described. The industrial product may be nuclear waste equipment, industrial equipment exposed to saline, a satellite or satellite component, or heating, ventilation, air-conditioning and refrigeration (HVACR) equipment.
Abstract:
A gas turbine engine component assembly includes first and second portions, wherein at least one of the first and second portions is a ceramic material. The first portion includes an aperture having a first angled surface. The second portion is disposed within the aperture and includes a second angled surface adjacent to the first angled surface. The first and second angled surfaces lock the first and second portions to one another under a pulling load. A bonding material operatively secures the first and second angled surfaces to one another.
Abstract:
A compliant attachment for an organic matrix composite component that is configured to interface with a mating component is disclosed. The compliant attachment may comprise an inner surface configured to bond to an interfacing surface of a body portion of the organic matrix component, and an outer surface configured to interface with the mating component. The compliant attachment may have a coefficient of thermal expansion intermediate between a coefficient of thermal expansion of the body portion of the organic matrix composite component and a coefficient of thermal expansion of the mating component.
Abstract:
An airfoil includes a core having a first surface, a skin having a second surface disposed over at least a portion of the first surface of the core, and at least one of a transient liquid phase (TLP) bond and a partial transient liquid phase (PTLP) bond. The bond(s) are disposed between the first surface and the second surface, joining the skin to the core.