Abstract:
A gas turbine engine component includes a wall having first and second wall surfaces, a cooling hole extending through the wall and a convexity. The cooling hole includes an inlet located at the first wall surface, an outlet located at the second wall surface, a metering section extending downstream from the inlet and a diffusing section extending from the metering section to the outlet. The diffusing section includes a first lobe diverging longitudinally and laterally from the metering section and a second lobe adjacent the first lobe and diverging longitudinally and laterally from the metering section. The convexity is located near the outlet.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A gas turbine engine component includes a wall with an inner face and an outer skin. A plurality of cooling air holes extend from the inner face to the outer skin. The cooling holes include an inlet merging into a metering section, and a diffusion section downstream of the metering section, and extend to an outlet at the outer skin. The diffusion section includes a plurality of lobes. A coating layer is formed on the outer skin, with at least a portion of the plurality of lobes formed within the thermal barrier coating. A method of forming such a component is also disclosed.
Abstract:
A gas turbine engine component includes a wall having first and second wall surfaces and a cooling hole extending through the wall. The cooling hole includes an inlet located at the first wall surface, an outlet located at the second wall surface and a diffusing section in communication with the inlet and extending to the outlet. The diffusing section includes a plurality of crenellation features that encourage lateral spreading of cooling air flowing through the cooling hole.
Abstract:
An industrial product comprising a polymer substrate formed in a shape of the industrial product, and a metallic plating layer plated on at least one surface of the industrial product is described. The industrial product may be nuclear waste equipment, industrial equipment exposed to saline, a satellite or satellite component, or heating, ventilation, air-conditioning and refrigeration (HVACR) equipment.
Abstract:
A component for a gas turbine engine includes a gas path wall having a first surface and a second surface and a cooling hole extending through the gas path wall from the first surface to the second surface. The cooling hole includes an inlet portion having an inlet at the first surface, an outlet portion having an outlet at the second surface, and a transition defined between the inlet and the outlet. The inlet portion converges in a first direction from the inlet to the transition and diverges in a second direction from the inlet to the transition. The outlet portion diverges at least in one of the first and second directions from the transition to the outlet.
Abstract:
A cooling channel array for a gas turbine engine is provided. The cooling channel array is carried by a component wall having an inner surface and an outer surface and comprises at least two metering portions that communicate with a diffusion cavity.
Abstract:
A method for forming a cooling hole extending from an inlet on a first surface of a wall to an outlet on a second surface of the wall includes forming a diffusing section of the cooling hole, and a trailing edge on the outlet by electrical discharge machining, and forming longitudinal lobes in the diffusing section. The metering section extends from the inlet on a first surface of the wall towards the second surface of the wall. The diffusing section extends from the outlet to one end of a metering section located between the inlet and the outlet. The outlet is substantially linear or convex at the trailing edge and the lobes are separated by longitudinal ridges.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
An industrial product comprising a polymer substrate formed in a shape of the industrial product, and a metallic plating layer plated on at least one surface of the industrial product is described. The industrial product may be nuclear waste equipment, industrial equipment exposed to saline, a satellite or satellite component, or heating, ventilation, air-conditioning and refrigeration (HVACR) equipment.