Abstract:
A fabrication method of a semiconductor structure includes the following steps. First of all, a gate structure is provided on a substrate, and a first material layer is formed on the substrate and the gate structure. Next, boron dopant is implanted to the substrate, at two sides of the gate structure, to form a first doped region, and P type conductive dopant is implanted to the substrate, at the two sides of the gate structure, to form a second doped region. As following, a second material layer is formed on the first material layer. Finally, the second material layer, the first material layer and the substrate at the two sides of the gate structure are etched sequentially, and a recess is formed in the substrate, at the two sides of the gate structure, wherein the recess is positioned within the first doped region.
Abstract:
A fin-shaped structure includes a substrate having a first fin-shaped structure located in a first area and a second fin-shaped structure located in a second area, wherein the second fin-shaped structure includes a ladder-shaped cross-sectional profile part. The present invention also provides two methods of forming this fin-shaped structure. In one case, a substrate having a first fin-shaped structure and a second fin-shaped structure is provided. A treatment process is performed to modify an external surface of the top of the second fin-shaped structure, thereby forming a modified part. A removing process is performed to remove the modified part through a high removing selectivity to the first fin-shaped structure and the second fin-shaped structure, and the modified part, thereby the second fin-shaped structure having a ladder-shaped cross-sectional profile part is formed.
Abstract:
A fin-shaped structure includes a substrate having a first fin-shaped structure located in a first area and a second fin-shaped structure located in a second area, wherein the second fin-shaped structure includes a ladder-shaped cross-sectional profile part. The present invention also provides two methods of forming this fin-shaped structure. In one case, a substrate having a first fin-shaped structure and a second fin-shaped structure is provided. A treatment process is performed to modify an external surface of the top of the second fin-shaped structure, thereby forming a modified part. A removing process is performed to remove the modified part through a high removing selectivity to the first fin-shaped structure and the second fin-shaped structure, and the modified part, thereby the second fin-shaped structure having a ladder-shaped cross-sectional profile part is formed.
Abstract:
A semiconductor device includes a substrate, a gate structure, a sidewall spacer, and an epitaxial layer. The gate structure is disposed on the substrate, and the substrate has at least one recess disposed adjacent to the gate structure. The sidewall spacer is disposed on at least two sides of the gate structure. The sidewall spacer includes a first spacer layer and a second spacer layer, and the first spacer layer is disposed between the gate structure and the second spacer layer. The epitaxial layer is disposed in the recess, and the recess is a circular shaped recess. A distance between an upmost part of the recess and the gate structure is less than a width of the sidewall spacer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a gate structure on the substrate; performing a first dry etching process to form a recess in the substrate adjacent to the gate structure; and performing a second dry etching process to expand the recess.
Abstract:
A method for manufacturing a semiconductor device is provided, comprising steps of providing a substrate with an underlying layer formed thereon; forming a gate layer overlying the underlying layer; and forming a multi-layer hard mask layer on the gate layer, and the multi-layer hard mask layer comprising a plurality of material layers and a top hard mask formed on the material layers, wherein the gate layer and the top hard mask contain the same element, such as silicon.
Abstract:
A method of forming a semiconductor device is provided. At least one stacked structure is provided on a substrate. A first spacer material layer, a second spacer material layer, and a third spacer material layer are sequentially formed on the substrate and cover the stacked structure. The first, second, and third spacer material layers are etched to form a tri-layer spacer structure on the sidewall of the stacked structure. The tri-layer spacer structure includes, from one side of the stacked structure, a first spacer, a second spacer, and a third spacer, and a dielectric constant of the second spacer is less than each of a dielectric constant of the first spacer and a dielectric constant of the third spacer.
Abstract:
A fin structure for a semiconductor device, such as a FinFET structure, has first and second semiconductor layers and an air gap between the layers. The second semiconductor layer includes a recessed portion, the air gap is located in the recessed portion, and the recessed portion has an upwardly-opening acute angle in the range from about 10° to about 55°. The air gap may prevent current leakage. A FinFET device may be manufactured by first recessing and then epitaxially re-growing a source/drain fin, with the regrowth starting over a tubular air gap.
Abstract:
A method of forming a semiconductor device is provided. At least one stacked structure is provided on a substrate. A first spacer material layer, a second spacer material layer, and a third spacer material layer are sequentially formed on the substrate and cover the stacked structure. The first, second, and third spacer material layers are etched to form a tri-layer spacer structure on the sidewall of the stacked structure. The tri-layer spacer structure includes, from one side of the stacked structure, a first spacer, a second spacer, and a third spacer, and a dielectric constant of the second spacer is less than each of a dielectric constant of the first spacer and a dielectric constant of the third spacer.
Abstract:
A semiconductor device includes a substrate, a gate structure, a sidewall spacer, and an epitaxial layer. The gate structure is disposed on the substrate, and the substrate has at least one recess disposed adjacent to the gate structure. The sidewall spacer is disposed on at least two sides of the gate structure. The sidewall spacer includes a first spacer layer and a second spacer layer, and the first spacer layer is disposed between the gate structure and the second spacer layer. The epitaxial layer is disposed in the recess, and the recess is a circular shaped recess. A distance between an upmost part of the recess and the gate structure is less than a width of the sidewall spacer.