Abstract:
The invention relates to a micro-machined fluid-flow device (10) comprising a substrate (12) possessing a flow duct (14), a deformable thin layer (18) such a pump membrane or a valve-forming membrane. According to the invention, the thin layer (18) is a rolled metal sheet, preferably made of titanium, and connected to the substrate (12) in the zone (20) overlapping the flow duct, by an anodic bonding. The invention is applicable to making a valve.
Abstract:
A refrigerant compressor includes a compression unit having a roller and a vane for compressing refrigerant. The vane has a film having first to fourth layers on its metallic base member. The first layer is made of chromium. The second layer is made of chromium and tungsten-carbide. The third layer is made of metal-containing amorphous-carbon containing at least tungsten or tungsten-carbide. The fourth layer is made of non-metal-containing amorphous-carbon containing carbon and hydrogen. In the second layer, chromium content-rate on a first-layer side is larger than on a third-layer side, and tungsten-carbide content-rate on the third-layer side is larger than on the first-layer side. In the third layer, content-rate of the at least tungsten or tungsten-carbide on a second-layer side is larger than on a fourth-layer side. The roller with which an end-edge of the vane slidably-contacts is made of flake graphite cast iron containing molybdenum, nickel and chromium.
Abstract:
The detonation-resistant material is applied to a piston to reduce the likelihood of damage to the piston caused by pinking or knocking. The detonation-resistant material, which may be nickel or a nickel based material, is applied to the upper part of the ring band and around an annular portion of the crown adjacent the edge of the crown. The ring band is, before treatment, machined to form a recess extending therearound which is filled with the detonation-resistant material by a plating process. Thus, on the ring band, the detonation-resistant material does not extend radially outwardly of the remainder of the ring band. This reduces the possibility of the detonation-resistant material scraping or scuffing on the associated cylinder or liner during movement of the piston in the associated cylinder or liner and also reduces the likelihood of the detonation-resistant material being scraped off.
Abstract:
The detonation-resistant material is applied to a piston (10) caused by pinking or knocking. The detonation-resistant material, which may be nickel or a nickel based material, is applied to the upper part of the ring band (12) and around an annular portion (19) of the crown adjacent the edge (13) of the crown. The ring band is, before treatment, machined to form a recess (15) extending therearound which is filled with the detonation-resistant material by a plating process. Thus, on the ring band, the detonation-resistant material does not extend radially outwardly of the remainder of the ring band. This reduces the possibility of the detonation-resistant material scraping or scuffing on the associated cylinder or liner during movement of the piston in the associated cylinder or liner and also reduces the likelihood of the detonation-resistant material being scraped off.
Abstract:
A piston for a diesel internal combustion engine including a crown portion at least partially formed of steel and having a combustion surface with a combustion bowl formed therein is provided. The combustion bowl presents a combustion bowl rim area, and a coating including at least one of a noble metal and a refractory metal is applied to substantially only the combustion bowl rim area. The coating is preferably applied in the areas of the combustion bowl rim area that are in line with the sprays of diesel fuel when the piston is in a top dead center position during operation of the engine.
Abstract:
A piston for a diesel internal combustion engine including a crown portion at least partially formed of steel and having a combustion surface with a combustion bowl formed therein is provided. The combustion bowl presents a combustion bowl rim area, and a coating including at least one of a noble metal and a refractory metal is applied to substantially only the combustion bowl rim area. The coating is preferably applied in the areas of the combustion bowl rim area that are in line with the sprays of diesel fuel when the piston is in a top dead center position during operation of the engine.
Abstract:
Gegenstand der Erfindung ist eine hydraulische Zahnradmaschine, vorzugsweise Zahnradpumpe, mit mindestens zwei ineinander greifenden, drehbar gelagerten Zahnrädern (3, 4). Zwischen mindestens einer Zahnradstirnseite und einem nicht drehenden Bauteil (8) der Zahnradmaschine ist eine scheibenförmige Dichtplatte (9) angeordnet. Erfindungsgemäß ist in der Dichtplatte (9) und/oder in dem nicht drehenden Bauteil (8) mindestens eine Kerbe (10) zur hydrostatischen Druckbeaufschlagung vorgesehen ist. Bevorzugt ist die Kerbe (10) in dem nicht drehenden Bauteil (8) vorgesehen. Zumindest die der Zahnradstirnseite zugewandte Seite der Dichtplatte (9) ist von einer Bronzelegierung gebildet.
Abstract:
The detonation-resistant material is applied to a piston (10) caused by pinking or knocking. The detonation-resistant material, which may be nickel or a nickel based material, is applied to the upper part of the ring band (12) and around an annular portion (19) of the crown adjacent the edge (13) of the crown. The ring band is, before treatment, machined to form a recess (15) extending therearound which is filled with the detonation-resistant material by a plating process. Thus, on the ring band, the detonation-resistant material does not extend radially outwardly of the remainder of the ring band. This reduces the possibility of the detonation-resistant material scraping or scuffing on the associated cylinder or liner during movement of the piston in the associated cylinder or liner and also reduces the likelihood of the detonation-resistant material being scraped off.
Abstract:
The invention concerns a micro-machined device (10) for fluids comprising a substrate (12) with a flow conduit (14), a thin ductile layer (18) such as a pumping diaphragm or a diaphragm forming a check-valve. The thin layer (18) is a laminated metal sheet, preferably made of titanium and connected to the substrate (12) at the overlapping zone (20) of the flow conduit, by anodic welding. The invention is useful for producing a check-valve.