Abstract:
A method makes an electromagnetic radiation detecting device including at least one thermal detector with an absorbent membrane suspended above a substrate, intended to be located in a sealed cavity. The method includes depositing, on the substrate, a gettering metallic layer including a metallic material with a gettering effect; depositing a carbonaceous sacrificial layer of amorphous carbon on the gettering metallic layer; depositing at least one sacrificial mineral layer on the carbonaceous sacrificial layer; chemical-mechanical planarization of the sacrificial mineral layer; fabricating the thermal detector so that the absorbent membrane is produced on the sacrificial mineral layer; removing the sacrificial mineral layer; and removing the carbonaceous sacrificial layer.
Abstract:
The present publication describes a heat-resistant optical layered structure, a manufacturing method for a layered structure, and the use of a layered structure as a detector, emitter, and reflecting surface. The layered structure comprises a reflecting layer, an optical structure on top of the reflecting layer, and preferably shielding layers for shielding the reflecting layer and the optical structure. According to the invention, the optical structure on top of the reflecting layer comprises at least one partially transparent layer, which is optically fitted at a distance to the reflecting layer.
Abstract:
A temperature estimation method includes the steps of measuring a content of a tetragonal-prime phase included in a coating layer formed on a surface of a high temperature member by X-ray diffraction or Rietveld analysis, Raman spectroscopy, or the like; and estimating a surface temperature of the high temperature member based on the estimated content of the tetragonal-prime phase.
Abstract:
A temperature sensor includes a front surface; a back surface; a first temperature-sensitive element and a second temperature-sensitive element disposed side by side between the front surface and the back surface; an infrared-ray absorber; and a heat-transfer inhibitor. When the temperature sensor is exposed to infrared rays that have propagated from both of a front-surface side and a back-surface side of the temperature sensor, the infrared absorber heats up by absorbing the infrared rays and transfers heat to the first temperature-sensitive element and the heat-transfer inhibiter inhibits heat transfer to the second temperature-sensitive element caused by the infrared rays.
Abstract:
A temperature sensor includes a front surface; a back surface; a first temperature-sensitive element and a second temperature-sensitive element disposed side by side between the front surface and the back surface; an infrared-ray absorber; and a heat-transfer inhibitor. When the temperature sensor is exposed to infrared rays that have propagated from both of a front-surface side and a back-surface side of the temperature sensor, the infrared absorber heats up by absorbing the infrared rays and transfers heat to the first temperature-sensitive element and the heat-transfer inhibiter inhibits heat transfer to the second temperature-sensitive element caused by the infrared rays.
Abstract:
The present publication describes a heat-resistant optical layered structure, a manufacturing method for a layered structure, and the use of a layered structure as a detector, emitter, and reflecting surface. The layered structure comprises a reflecting layer, an optical structure on top of the reflecting layer, and preferably shielding layers for shielding the reflecting layer and the optical structure. According to the invention, the optical structure on top of the reflecting layer comprises at least one partially transparent layer, which is optically fitted at a distance to the reflecting layer.
Abstract:
A terahertz-wave detector having a thermal separation structure in which a temperature detection unit 14 including a bolometer thin film 7 connected to electrode wiring 9 is supported so as to be lifted above a substrate 2 by a support part 13 including the electrode wiring 9 connected to a reading circuit 2a formed on the substrate 2, wherein the terahertz-wave detector is provided with a reflective film 3 that is formed on the substrate 2 and reflects terahertz waves and an absorption film 11 that is formed on the temperature detection unit 14 and absorbs terahertz waves and the reflective film 3 is integrally formed with the reflective film of an adjacent terahertz-wave detector.
Abstract:
An infrared detecting arrangement includes an infrared detecting element having a heat insulating film and an infrared detector which are disposed between an interior space of a hermetically sealed casing for the element and a cavity formed within a substrate of the element and communicating through a ventilator with the interior space.