Abstract:
A phase-modulated interferometer has improved control and signal processing. Superimposition signals capable of evaluation in a phase-modulated interferometer without a complicated sawtooth control of the phase modulator are attained, in that two sinusoidal control signals which have modulation frequencies (.omega..sub.1, .omega..sub.2) and are rigidly coupled with respect to phase and frequency are applied to the known phase modulator and a cosine signal which is used in a conventional manner for evaluating the phase displacement is filtered of the superimposition signal generated in the interferometer by an electronic bandpass filter. At the filter frequency (.omega..sub.F) of the bandpass filter, an odd-number harmonic and an even-number harmonic of the two modulation frequencies (.omega..sub.1, .omega..sub.2) have the same frequency, when the amplitudes (.phi..sub.1, .phi..sub.2) of the control signals satisfy the condition for the suitable operating point of the phase modulator. The improvement has application to phase-modulated interferometers, in particular, for precision distance measuring devices, preferably by the heterodyne evaluating method.
Abstract:
The invention relates to measuring a phase-modulated signal 5. The signal is measured along at least five different steps (P1-P5) corresponding to preselected phase angles of the carrier wave 4. From the associated sets of measured values, at least three sets of measured values are formulated in a manner that from each of the sets a phase value [.phi..sub.i =arctan (Z.sub.i /N.sub.i) where i is equal to or greater than 3] can be calculated. The same correct phase value is computed based upon these three sets for a signal with the frequency of the carrier wave. The essence of the invention is finding that linear combinations of a.sub.i Z.sub.i and a.sub.i N.sub.i can be used for the computation of an accurate phase measurement where the factors a.sub.i are selected so that the phase error, as a function of the preselected phase steps, has at least three zero positions among the measured phase steps (P1-P5). As a result, the systemic errors that normally accompany phase measuring are significantly reduced. The invention is particularly suitable for the evaluation of bar pattern images and multiple-bar pattern images.
Abstract:
The present invention is a two beam, double pass, phase shifting interferometric system for characterizing the phase profile of a radiation path. In the preferred form of the invention, a monochromatic beam is split into a reference beam and a test path beam. The test path beam is directed toward a fixed reflector which in turn directs that beam to the image sensor with a fixed length in the direction of propagation. The reference beam is directed to a movable reflector which directs that beam also to the image sensor, while introducing phase modulation. The system provides a measure of phase offset introduced into the reference beam at times of minimum or maximum intensity as measured by each photo detector in the image sensor, as the phase modulation of the reference beam is stepped over one complete wavelength. The phase profile of the test path is constructed using the accurate representation of the modulating refelector's position at the measured minimum or maximum intensity and the number of discontinuities in the phase offset data at each element's location.
Abstract:
An imaging coherent radiometer for detecting and determining the location and wavelength of coherent radiation or coherent lack of radiation in the presence of non-coherent ambient radiation. The apparatus includes an unequal path interferometer which divides incoming radiation containing coherent and non-coherent radiation into a first beam path and a second beam path through which a first beam and a second beam, respectively, travel. The optical path length difference between the first beam path and the second beam path are greater than the coherence length of the non-coherent radiation, but substantially less than the coherence length of the coherent radiation or coherent lack of radiation. Modulation means are provided to cause a predetermined difference in the optical frequencies between the first beam and the second beam proportional to a modulation signal. The first and second beams are then recombined into a recombined beam. Detecting means are provided to detect the interference of the first and second beams across the entire wavefront of the recombined beam, and over the entire image of the scene being viewed. Processing means detect and determine the location and wavelength of coherent radiation or coherent lack of radiation in the scene being viewed by the apparatus. This information can then be visually displayed. Additional processing means to respond to specific coherent wavelengths or wavelength sets.
Abstract:
Conformal imaging vibrometer using adaptive optics with scene-based wave front sensing. An extended object is located at the first end of a link, and a reference-free, adaptive optical, conformal imaging vibrometer using scene-based wave front sensing is located at the second end of the link. An aberrated, free space or guided-wave path exists between the ends of the link. The adaptive optical system compensates for path distortions. Using a single interrogation beam, whole-body vibrations of opaque and reflective objects can be probed, as well as transparent and translucent objects, the latter pair employing a Zernike heterodyne interferometer.
Abstract:
An optical spectrum analyzer (OSA) for measuring an optical spectrum of an input optical signal in a measurement wavelength range is provided. The OSA comprises a modulator, an integrated optical filter, and a photodetector. The modulator modulates the input optical signal by applying a dither modulation to facilitate detection and noise rejection. The integrated optical filter, which may include a ring resonator system, is sequentially tunable to selectively transmit each wavelength of the modulated optical signal in the measurement wavelength range. The photodetector sequentially detects each wavelength of the modulated optical signal in the measurement wavelength range to provide a representative output electrical signal.
Abstract:
A method includes directing a portion of a laser beam output from a laser along a secondary beam path toward a detector, the secondary beam path being distinct from a main beam path of the laser beam; generating a bandwidth selective interference pattern of the laser beam on the detector; detecting, at the detector, a width of a fringe within the interference pattern to thereby measure measuring a bandwidth of the laser beam; and homogenizing the laser beam traveling along the secondary beam path prior to generation of the bandwidth selective interference pattern. The homogenizing includes diffusing the laser beam; and introducing a time dependent, position dependent, or both time and position dependent random modulation to the wavefront of the laser beam to reduce fluctuations in the detected fringe width and to reduce the influence of spatial coherence of the laser beam on the detected interference pattern.
Abstract:
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Abstract:
An imaging coherent radiometer for detecting and determining the location and wavelength of coherent radiation or coherent lack of radiation in the presence of non-coherent ambient radiation. The apparatus includes an unequal path interferometer which divides incoming radiation containing coherent and non-coherent radiation into a first beam path and a second beam path through which a first beam and a second beam, respectively, travel. The optical path length difference between the first beam path and the second beam path are greater than the coherence length of the non-coherent radiation, but substantially less than the coherence length of the coherent radiation or coherent lack of radiation. Modulation means are provided to cause a predetermined difference in the optical frequencies between the first beam and the second beam proportional to a modulation signal. The first and second beams are then recombined into a recombined beam. Detecting means are provided to detect the interference of the first and second beams across the entire wavefront of the recombined beam, and over the entire image of the scene being viewed. Processing means detect and determine the location and wavelength of coherent radiation or coherent lack of radiation in the scene being viewed by the apparatus. This information can then be visually displayed. Additional processing means to respond to specific coherent wavelengths or wavelength sets.