-
公开(公告)号:CN106017673A
公开(公告)日:2016-10-12
申请号:CN201610308908.8
申请日:2016-05-10
Applicant: 天津大学
CPC classification number: G01J3/1804 , G01J3/1838 , G02B26/0833
Abstract: 本发明属于光谱测量仪器领域,为提供一种基于MEMS扫描微镜的双通过光栅单色仪光路结构。本发明‑基于MEMS扫描微镜的双通过光栅单色仪光路结构,由光环形器,光纤信号输入端口,入射光纤端口,准直与聚焦镜,MEMES微镜,光栅,平面反射镜和出射光纤端口组成;光纤信号输入端口连接光环行器的第一端口,光信号经过光环行器的第二端口从入射光纤端口进去自由空间,经过双胶合透镜准直以后照射到MEMS微镜上,MEMS微镜将光信号反射到光栅上进行第一次衍射分光,紧接着平面反射镜将光信号按原路反射回光栅进行第二次衍射,最后进入入射光纤端口。本发明主要应用于光谱测量仪器设计制造。
-
公开(公告)号:CN105980819A
公开(公告)日:2016-09-28
申请号:CN201580007227.1
申请日:2015-02-03
Applicant: 浜松光子学株式会社
CPC classification number: G01J3/0208 , G01J3/021 , G01J3/0224 , G01J3/0256 , G01J3/0291 , G01J3/0294 , G01J3/18 , G01J3/1838 , G01J3/24 , G01J3/2803
Abstract: 本发明的分光器(1A)具有分光单元(2A)、(2B)、(2C)。分光单元(2A)具有的光通过部(21A)、反射部(11A)、共通反射部(12)、分光部(40A)和光检测部(22A),从Z轴方向看时,沿着基准线(RL1)排列。分光单元(2B)具有的光通过部(21B)、反射部(11B)、共通反射部(12)、分光部(40B)和光检测部(22B),从Z轴方向看时,沿着基准线(RL2)排列。分光单元(2C)具有的光通过部(21C)、反射部(11C)、共通反射部(12)、分光部(40C)和光检测部(22C),从Z轴方向看时,沿着基准线(RL3)排列。基准线(RL1)与基准线(RL2)、(RL3)交叉。
-
公开(公告)号:CN102946794A
公开(公告)日:2013-02-27
申请号:CN201180031147.1
申请日:2011-06-21
Applicant: 森斯派克有限公司
Inventor: A·库尔克
IPC: A61B5/00 , G01J3/02 , G01J3/28 , A61B5/1455
CPC classification number: G01J3/1838 , A61B5/14532 , A61B5/1455 , A61B5/6801 , A61B5/7239 , G01J3/021 , G01J3/0256 , G01J3/0264 , G01J3/2803 , G01J3/42 , G01N21/31 , G01N2021/3144 , G01N2201/062
Abstract: 本发明涉及用于测定并监视测量介质的成分或特性的装置,例如测定并监视生理血液值,其中所述装置包含光源(20),用于生成宽带测量光(2)并在测量区域(3)上发生作用,以及用于将被测量区域(3)反射的分析光(4)扇形散开的工具(9)。该装置还具有用于提取扇形光的传感器阵列(11)。传感器阵列(11)、光源(20)以及用于分散分析光(4)的工具被布置为外壳中的紧凑单元。
-
公开(公告)号:CN1117285C
公开(公告)日:2003-08-06
申请号:CN00133647.9
申请日:2000-11-30
Applicant: 株式会社岛津制作所
IPC: G02B5/18
CPC classification number: G03F7/0005 , G01J3/1838 , G03H1/0244 , G03H1/028 , G03H2001/0296 , G03H2260/63
Abstract: 一种全息光栅,其中相对在光致抗蚀层2上,按照大于所需槽的深度的值通过曝光方式形成的衍射光栅图形,沿与抗蚀图形的刻线方向相垂直,并且相对主板的法线方向的斜上的方向,借助按照O2/(CF4+O2)在0.1~0.9的比例范围而适当混合的CF4与O2的混合气体,进行蚀刻处理,直至光致抗蚀层2完全消失,直接在光学玻璃主板1上,刻线而形成所需深度的槽。该全息光栅具有耐久性,漫射光值优良,衍射效率较高,并且较宽波段的衍射变化较小。
-
公开(公告)号:JP4905193B2
公开(公告)日:2012-03-28
申请号:JP2007069351
申请日:2007-03-16
Applicant: コニカミノルタセンシング株式会社
CPC classification number: G01J3/04 , G01J3/18 , G01J3/1838 , G02B5/1861
-
公开(公告)号:JP2013109082A
公开(公告)日:2013-06-06
申请号:JP2011252674
申请日:2011-11-18
Applicant: Olympus Corp , オリンパス株式会社
Inventor: TOMIOKA MASAHARU
CPC classification number: G02B21/0076 , G01J3/0208 , G01J3/021 , G01J3/0237 , G01J3/06 , G01J3/1838 , G01J3/4406 , G02B21/0064
Abstract: PROBLEM TO BE SOLVED: To provide a detection optical system having a spectrum detection function, capable of enhancing the amount of light detected by improving diffraction efficiency.SOLUTION: A detection optical system 10 is adopted which includes: a transmission type VPH diffraction grating 11 which divides fluorescent light from a sample into a plurality of wavelength bands; a rotation mechanism which rotates the VPH diffraction grating 11 around an axis line L orthogonal to an incident optical axis of the fluorescent light from the sample and an emission optical axis from the VPH diffraction grating 11; a light detection part 15 which detects the fluorescent light divided by the VPH diffraction grating 11 and from the sample; and correction means which corrects an incident position to the light detection part 15 in accordance with displacement of an optical axis caused by rotation of the VPH diffraction grating 11 in synchronization with the rotation mechanism.
Abstract translation: 要解决的问题:提供一种具有频谱检测功能的检测光学系统,其能够通过提高衍射效率来增强检测到的光量。 解决方案:采用检测光学系统10,其包括:透射型VPH衍射光栅11,其将来自样品的荧光分成多个波长带; 旋转机构,其使VPH衍射光栅11绕垂直于来自样品的荧光的入射光轴的轴线L和来自VPH衍射光栅11的发射光轴旋转; 检测由VPH衍射光栅11和样品分开的荧光的光检测部15; 以及校正装置,其根据与旋转机构同步的VPH衍射光栅11的旋转引起的光轴的位移校正光检测部15的入射位置。 版权所有(C)2013,JPO&INPIT
-
公开(公告)号:JP2012522277A
公开(公告)日:2012-09-20
申请号:JP2012503368
申请日:2010-03-29
Applicant: ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ
Inventor: オケルストロム・パトリック , トーモッド・スティグ , ホルンクビスト・ミカエル
CPC classification number: G01J3/02 , G01J3/0202 , G01J3/1838 , G01J3/42 , G01J2003/2866 , G02B7/004
Abstract: 【課題】
【解決手段】光入射ポート(15)及び光射出ポート(20)と対向する凹面ホログラフィック回折格子(2)の正確な位置決めを可能にする格子の調整可能なホルダ(1)であって、前記格子に固定された格子ヒンジ(10)を具備し、前記格子ヒンジ(10)は、前記ホルダ(1)に関する格子位置の回転調整を可能にし、回転調整の中心点は前記格子(2)の頂点に位置している、ホルダ。
【選択図】図3-
公开(公告)号:KR1019940010055B1
公开(公告)日:1994-10-21
申请号:KR1019850008304
申请日:1985-11-07
Applicant: 매슈렉스코오포레이션
Inventor: 마아크알구아드
IPC: G01J3/46
CPC classification number: G01J3/50 , G01J3/1838 , G01J3/502 , G01J2001/4242 , G01J2003/468 , G01N21/4738 , G01N21/64 , G01N21/86
Abstract: 내용 없음.
-
公开(公告)号:KR1020060103820A
公开(公告)日:2006-10-04
申请号:KR1020057025177
申请日:2004-07-08
Applicant: 신테프 또 에이에스
CPC classification number: G03B35/26 , G01J3/1838 , G02B5/1828 , G02B26/00 , G02B26/0808 , H04N9/3117 , H04N13/334 , H04N13/363
Abstract: This invention relates to a colour separator and the use of this in a projector, especially for video projectors, comprising a surface adapted to be moved through a light beam to be separated, the surface comprising a diffractive/holographic (DOE) optical element capable of directing different wavelengths comprised in the light beam toward different parts of a predetermined area. The diffractive optical element being essentially continuos along one direction on the surface moved through the light beam and that direction of the separated colours depending on the position along the surface so as to provide a scanning of colours over each part of the predetermined area depending on the illuminated part of the diffractive surface.
Abstract translation: 本发明涉及一种颜色分离器及其在投影仪中的应用,特别是对于视频放映机,其包括适于被移动通过要被分离的光束的表面,该表面包括衍射/全息(DOE)光学元件,其能够 将包括在光束中的不同波长指向预定区域的不同部分。 衍射光学元件在移动通过光束的表面上沿着一个方向基本上是连续的,并且取决于沿着表面的位置的分离的颜色的方向,以便在预定区域的每个部分上根据 照射部分的衍射面。
-
公开(公告)号:KR1019950008824B1
公开(公告)日:1995-08-08
申请号:KR1019910005875
申请日:1991-04-12
Applicant: 레이티언 컴파니
IPC: G01J3/00
CPC classification number: G01J3/1838 , G01J3/0237 , G01J3/0256 , G01J3/0259 , G01J3/0286 , G01J3/0289 , G01J3/2803 , G01N21/3504 , G01N2201/067
Abstract: This invention relates to a dispersive holographic spectrometer (12) for analyzing radiation from an infrared source (16). The holographic spectrometer (12) comprises a piezoelectric block (40) having a holographic lens (38) on one face, an array of detectors (36) on another face and a pair of vernier electrodes (32, 34) on opposite faces. Radiation from the source (16) incident upon the holographic lens (38) is dispersed into component wavelengths (44, 46) and directed towards the detector array (36). The holographic lens (38) has a holographic interference pattern recorded on it such that radiation of predetermined wavelength components are dispersed sufficiently enough such that radiation of specific wavelengths falls on different detector elements (48) of the detector array (36). By applying a voltage to the electrodes (32, 38), an electric field is created within the piezoelectric block (40) such that it is either compressed or expanded. This change in the piezoelectric block (40) alters the direction of the radiation from the holographic lens (38) to the detector array (36). Therefore, misalignment of the source (16) with the holographic lens (38) can be compensated for such that piezoelectric adjustment of the block (40) will make the radiation of individual wavelengths fall on the desired detector element (48). Further, radiation from different wavelengths can be directed from one detector element to another. The detector array (36) is self-scanning such that an absorption spectrum can be measured and recorded over a range of frequencies.
-
-
-
-
-
-
-
-
-