Abstract:
A monochromator having a concave holographic grating which is turnable in rotation and provided with an inlet slot parallel to the lines of the grating for incident light and an outlet slot also parallel to the lines of the grating, the inlet and outlet slots being disposed on opposite sides of a diametrial median plane P of the grating extending perpendicular to the lines of the grating and passing through the center of the grating. The bisector of the angle A, formed by two lines connecting the center of each slot to the center of the grating is contained in the plane P, the slots being additionally disposed such that the projection .alpha. of the angle A on the plane P is .ltoreq. 3.degree. and the projection .beta. of the angle A on the plane P' containing the bisector and perpendicular to the plane P is .ltoreq. 15.degree.. Two elementary monochromators can be connected in series and the gratings of the elementary monochromators are carried by a common rotation shaft, the image of the outlet slot of one elementary monochromator being sent to the inlet slot of the following monochromator by an optical system composed of planar mirrors, and a spherical mirror extending parallel to the gratings and turnable around an axis parallel to the axis of the shaft. SUFIELD OF THE INVENTIONThe invention relates to a monochromator having slots and a concave holographic grating, and more particularly, by way of example, to a monochromator adapted to the study of RAMAN spectrums. The invention is also related to apparatus realized by the coupling of a plurality of monochromators of this type.BACKGROUNDThere are known optical monochromators having a grating which for example have described on pages 78 to 81 in, "Applied Optics and Optical Engineering," by Robert J. Meltzer, edited in 1969 by Rudolf Kingslake. The grating monochromators at first utilized a planar grating which necessitated the use of a collimator and an objective. These optical auxiliary members introduce aberrations which generate errors and these have been remedied by the use of concave grating which eliminate the objective and the collimator. The concave gratings, usually engraved, are astigmatic and this deficiency has been recently overcome by the use of concave holographic gratings which reduce the aberrations, notably when they are utilized at optimum angles. These diffraction gratings are manufactured, in particular, by the SOCIETY INSTRUMENTS. S.A., at Longjumeau, France. This society has edited a technical brochure which discloses holographic gratings and the physics of diffraction gratings.These documents which well illustrate the current state of the art, show that in such known monochromators the inlet and outlet slots are disposed parallel to the lines of the grating and the center of each slot is in a diametral, median plane P of the surface of the grating. The diametal plane itself is perpendicular to the lines of the grating. FIG. 1 shows in very simplified manner this state of the art. Therein in frontal view there is seen a concave grating 31 whose diametral median plane P perpendicular to the lines of the grating, is represented by phantom line 32. The light to be analyzed is passed through the inlet slot 33, and the monochromatic light which is sought is isolated by the outlet slot 34. It is seen that the slots 33 and 34 are each symetrically disposed with respect to the plane P, and the lateral spacing between these slots is relatively substantial. The inlet and outlet slots are fixed and the grating is turnably mounted to selectively make the outlet slot face the portion of the spectrum that one wishes to utilize. It can, therefore, frequently occur unexpectedly that a portion of the spectrum spreads itself to the zone of the inlet slot, thus introducing parasitic light into the system. This disadvantage is not very serious for monochromators operating with sources of relatively great luminosity, but in contrast it becomes a very substantial disadvantage when one operates with RAMAN spectrums. The very low intensities of these rays requires the elimination of all parasitic light and it is also for this reason that monochromators having concave, holographic gratings are utilized which operate under good conditions without the ue of auxiliary optical elements for collimation and for focusing.It is also known in the case of conventional monochromators of the type of FIG. 1 that with a relatively substantial angle of deviation between the mean incident ray passing through the center of the slot and the peak of the grating, and the mean diffracted ray issuing from the peak of the grating and passing through the center of the outlet slot that the quality of the formed spectral image is a maximum in the vicinity of the diametral plane. Similarly, the quality of the spectral image is best if the entry slot only extends slightly on opposite sides of the median plane. For a good quality of image, one seeks, therefore, generally, to utilize inlet and outlet slots of short lengths. This is not a disadavantage when the luminosity is great, but for the study of RAMAN spectrums, having low energy, one is obliged to utilize relatively long slots and the images of the extremities present aberrations resulting in a loss of resolution of the apparatus.SUMMARY OF THE INVENTIONAn object of the present invention is to provide a monochromator which simultaneously permits the use of long slots with good image qualities and avoids the introduction of parasitic light due to the spreading out of the spectrum to the inlet slot.According to the invention, in a monochromator having a concave, holographic grating orientable in rotation and provided with an inlet slot parallel to the lines of the grating for the incident light, and an outlet slot also parallel to the lines of the grating, the inlet and outlet slots are each disposed entirely on opposite sides of the median. diametral plane P of the grating extending perpendicualr to the lines of the grating and passing through the peak or center of the grating, the bisector of the angle A, formed by lines connecting the center of each slot to the peak of the grating being contained in the plane P, the slots being additionally disposed such that the projection .alpha. of the angle A, on the plane P is .ltoreq. 3.degree. and the projection .beta. of the angle A on the plane P' passing through the bisector and perpendicular to the plane P is .ltoreq.15.degree..
Abstract:
A conical diffraction grazing incidence spectroscope for performing wavelength scanning by rotating a diffraction grating about an axis set parallel to groves in a grazing surface of the grating.
Abstract:
An optical system and method comprising a diffraction grating which rotates about its surface normal to change the magnitude of the wavelength diffracted to an image location. At grazing incidence, such a rotation is determined to maintain the diffracted image in focus over a wide range in scanned wavelength. Monochromator and spectrometer embodiments include plane and curved surface gratings with both classical and varied-spaced groove patterns, and a variety of illumination geometries. In the simplest case, a grazing incidence monochromator is constructed in which a self-focusing classical spherical grating scans the value in wavelength which is transmitted between fixed slits located on the Rowland circle of the grating. The diffracted image remains in perfect focus over two octaves in wavelength at high efficiency, with both entrance and exit slits fixed in position, and the radiation aperture is constant.
Abstract:
A plane diffraction grating based on surface normal rotation according to the present invention is designed so that the profile of the grooves at a radial area is determined depending on a rotational position of the area about a rotational center defined as a foot of the rotational axis on the surface of the plane diffraction grating. An optical system such as a spectrometer or a monochromator according to the present invention uses such a plane diffraction grating, and requires a special arrangement. The optical system includes: a plane diffraction grating as described above; a mechanism for rotating the plane diffraction grating about the rotational axis; an incidence optical system for casting a converging beam of light on a point of the surface of the plane diffraction grating, where the point is set apart from the rotational center. As the diffraction grating is rotated about the rotational center, the point on which the incident converging beam of light is cast rotates about the rotation center, where the diffracting condition is optimized anywhere around the rotational center or for any scanning wavelength. The surface of the plane diffraction grating can be covered with a multiple-layer coating to improve diffraction efficiency. When such a multiple-layer is coated, the unit thickness of the multiple-layer coating at an area is also determined depending on the rotational position of the area about the rotational center.
Abstract:
A division-of-amplitude photopolarimeter based on conical grating diffraction includes a diffraction grating and at least four photodetectors. An incident light beam is directed at the grating at an oblique incidence angle .PHI. and the grating grooves are inclined at an arbitrary angle .alpha. with respect to the plane of incidence. Each of the photodetectors is positioned to intercept one of the diffracted orders and may be an area array detector if spectropolarimetry use is desired. Polarizing means may be inserted in the paths of one or more of the diffracted orders. A division-of-amplitude photopolarimeter based on planar grating diffraction includes a diffraction grating and at least four photodetectors; the grating is placed in the conventional spectrometer orientation with its grating grooves perpendicular to the plane of incidence. Each of the photodetectors is positioned to intercept one of the diffracted orders, all of which lie in the plane of incidence and may be a linear array detector if spectropolarimetry use is desired. Polarizers are inserted in the paths of at least two of the diffracted orders between the grating and the detectors.
Abstract:
Various vacuum ultraviolet monochromators embodying a rotatable diffraction grating and fixed entrance and exit slits, and working at a predetermined magnification are disclosed which provide improved optical performances by a correction of the odd terms of the wavefront aberration. In one group of instruments the fixed angle 2.theta. between the entrance and the exit beams is 90.degree. and the magnification 1. In another group, grazing incidence instruments are considered, 2.theta. being equal to 166.degree..