Abstract:
An imaging spectrometer and method are provided. In one example, the imaging spectrometer includes foreoptics positioned to receive electromagnetic radiation from a scene, a diffraction grating positioned to receive the electromagnetic radiation from the foreoptics and configured to disperse the electromagnetic radiation into a plurality of spectral bands, each spectral band corresponding to a diffraction grating order of the diffraction grating, and a single- band focal plane array configured to simultaneously receive from the diffraction grating overlapping spectra corresponding to at least two diffraction grating orders.
Abstract:
A spectrophotometer is provided, which comprises a receiving part diffusing an incident light, a first broadband filter group, and a detector detecting the light having passed through the first broadband filter group, in order to easily select and detect a plurality of lights having specific wavelengths, wherein the first broadband filter group comprises a first broadband filter arranged to have a first angle with respect to an incident direction of light to enable the incident light to pass through a first wavelength band, a second broadband filter arranged to have a second angle, which is different from the first angle, with respect to an incident direction of light to enable the light having passed through the first broadband filter to pass through a second wavelength band, and a first path compensation means for adjusting a path of the light having passed through the second broadband filter to be identical to a path of the light having passed through the first broadband filter, wherein the first broadband filter, the second broadband filter and the first path compensation means are arranged in series with respect to the incident direction of light. Accordingly, it is possible to increase the efficiency of the outputted light compared to the incident light, and to detect a plurality of lights having the desired specific wavelengths at the same time.
Abstract:
An optical system for a multidetector array spectrophotometer includes multiple light sources (10,12) for emitting light of selected wavelength ranges and means for selectively transmitting the selected wavelength ranges of light to respective slits (40,42) of a multi-slit spectrograph for multiple wavelength range detection. The spectrograph has two or more slits (40,42) which direct the selected wavelength ranges of the light spectra to fall upon a dispersive and focusing system which collects light from each slit, disperses the light by wavelength and refocuses the light at the positions of a single set of detectors (46).
Abstract:
The invention relates to a confocal spectrometer comprising a broadband light source, a first aperture device arranged rotatably in front of the light source and having a structured arrangement of a plurality of through holes, which is designed to illuminate by means of the light source the visual field of an object to be imaged, an imaging optical system that is designed to focus an image of the structured arrangement of the plurality of through holes onto the object, a dispersion element that is designed to spectrally disperse the light reflected by the object along a dispersion axis perpendicular to the optical axis of the imaging optical system, and a detector device that is designed to capture the spectrally dispersed reflected light for producing a spectrally resolved image of the object.
Abstract:
An optical system for a multidetector array spectrophotometer includes multiple light sources (10,12) for emitting light of selected wavelength ranges and means for selectively transmitting the selected wavelength ranges of light to respective slits (40,42) of a multi-slit spectrograph for multiple wavelength range detection. The spectrograph has two or more slits (40,42) which direct the selected wavelength ranges of the light spectra to fall upon a dispersive and focusing system which collects light from each slit, disperses the light by wavelength and refocuses the light at the positions of a single set of detectors (46).
Abstract:
An apparatus for carrying out spectral analysis of optical radiation emitted from a light source (11) comprises a spectral detector (1) having an entrance aperture (10) for the radiation from thelight source (11), a first imaging optical component (12), a diffraction grating (14) for wavelength dispersion of the radiation, order sorting means (131, 132) for separation of the spectral orders of the diffraction grating (14), a second imaging optical component (15), and a detecting unit (16) for registration of the light source spectrum divided into order spectra through the order sorting means (131, 132). The order sorting means (131, 132) comprise at least two refractive optical components manufactured from different material. The two refractive optical components (131 and 132) together with the diffraction grating (14) and the imaging optical components (12 and 15) produce a substantially uniform distribution of the order spectra on the detector unit (16). Favourably the order sorting means (131, 132), the diffraction grating (14) and the imaging optical components (12, 15) also co-act to produce a substantially stigmatic image of the entrance aperture (10) in at least one point on the detector unit (16).