Abstract:
An optical metrology device is capable of detection of any combination of photoluminescence light, specular reflection of broadband light, and scattered light from a line across the width of a sample. The metrology device includes a first light source that produces a first illumination line on the sample. A scanning system may be used to scan an illumination spot across the sample to form the illumination line. A detector collects the photoluminescence light emitted along the illumination line. Additionally, a broadband illumination source may be used to produce a second illumination line on the sample, where the detector collects the broadband illumination reflected along the second illumination line. A signal collecting optic may collect the photoluminescence light and broadband light and focus it into a line, which is received by an optical conduit. The output end of the optical conduit has a shape that matches the entrance of the detector.
Abstract:
An optical system for detecting light from a 2D area of a sample (36) comprises a collection lens (34) for collecting light from a collection region of the sample. A light detector (44) is positionally fixed with respect to the sample, and a reflector arrangement (61) directs collected light to the detector. The reflector arrangement comprises movable components and the collection lens (34) is movable relative to the sample. The collection lens and the movable components are configurable to define different collection regions, and the movement of the components effects a direction of the light from the collection region to a substantially unchanged area of the light detector (44). This arrangement avoids the need for a bulky detector in order to detect signals from a 2D sample area formed by scanning across the sample.
Abstract:
A system for carrying out fibered multiphoton microscopic imagery of a sample (10) for use in endoscopy or fluorescence microscopy includes: a femtosecond pulsed laser (1, 2) for generating a multiphoton excitation laser radiation; an image guide (8) having a number of optical fibers and permitting the sample to be illuminated by a point-by-point scanning in a subsurface plane; pre-compensating elements (4) for pre-compensating for dispersion effects of the excitation pulses in the image guide (8), these elements being situated between the pulsed laser and the image guide (8); scanning elements for directing, in succession, the excitation laser beam in a fiber of the image guide, and; in particular, an optical head (9) for focussing the excitation laser beam exiting the image guide in the sample (10).
Abstract:
A mapping-measurement apparatus includes a light illumination unit, a photodetector for detecting, through an aperture, reflection light or transmission light from a sample, and adjustable scanning mirrors on the illumination and detection sides of the sample, each mirror having two independent rotational axes about which they can be independently rotated by a controller. The aperture restricts light incident on the photodetector from a predetermined portion of the sample surface.
Abstract:
The foreign particle detecting method and apparatus are disclosed wherein a polarized laser beam emitted by a laser beam irradiating system from a direction inclined with respect to the direction perpendicular to the surface of a substrate is used by a scanning means to linearly scan the substrate surface from a direction approximately 90.degree. with respect to the laser light irradiating direction; and the laser light reflected from a foreign particle on the substrate surface is detected by a polarized light analyzer and a photoelectric conversion device from a direction set approximately equal to said scanning direction and inclined with respect to the direction perpendicular to the substrate surface.
Abstract:
A system for inspecting a component (104) is provided. The system includes an imaging system (204), such as a digital camera. A controller (202) is connected to the digital camera. The controller receives the digital image data of a device that is generated by the camera. The controller processes the digital image data to generate control commands. A variable grid generation system (106) is also connected to the controller. The variable grid generation system can receive commands from the controller, and can generate a grid (102) in response to the commands that matches the component and that allows the component to be inspected.
Abstract:
An optical metrology device capable of detection of any combination of photoluminescence light, specular reflection of broadband light, and scattered light from a line across the width of a sample is disclosed. The metrology device includes a first light source (110) that produces a first illumination line (122) on the sample (101). A scanning system (116) may be used to scan an illumination spot across the sample to form the illumination line. A detector (130) spectrally images the photoluminescence light emitted along the illumination line. Additionally, a broadband illumination source (140) may be used to produce a second illumination line (142) on the sample, where the detector spectrally images specular reflection of the broadband illumination along the second illumination line. The detector may also image scattered light from the first illumination line. The illumination lines may be scanned across the sample so that all positions on the sample may be measured.
Abstract:
L'invention concerne un système d'imagerie multiphotonique fibre d'un échantillon (10) pour une utilisation en endoscopie ou en microscopie de fluorescence, Ce système comprend : un laser puisé femtoseconde (1, 2) pour générer un rayonnement laser multiphotonique d'excitation, un guide d'image (8) constitué d'une pluralité de fibres optiques et permettant d'illuminer l'échantillon par un balayage point par point dans un plan subsurfacique, des moyens de pré-compensation (4) pour compenser des effets de dispersion des impulsions d'excitation dans le guide d'image (8), ces moyens étant disposés entre le laser puisé et le guide d'image (8), des moyens de balayage pour diriger tour à tour le faisceau laser d'excitation dans une fibre du guide d'image, et notamment une tête optique (9) pour focaliser le faisceau laser d'excitation sortant du guide d'image dans l'échantillon (10).
Abstract:
An optoelectronic sensor (10) for detecting objects in a monitored zone (20) is provided which has the following: a front screen (38); a light transmitter (12) for transmitting a light beam (16); a movable deflection unit (18) for the periodic sampling of the monitored zone (20) by the light beam (16); a light receiver (26) for generating a received signal from the light beam (22) remitted by the objects; at least one test light transmitter (42); at least one test light transmitter (42), at least one test light receiver (44) and at least one test light reflector (48) which span a test light path (46a-b) through the front screen (38); and an evaluation unit (32) which is configured to acquire pieces of information on the objects in the monitored zone (20) from the received signal and to recognize an impaired light permeability of the front screen (38) from a test light signal which the test light receiver (44) generates from test light which is transmitted from the test light transmitter (42) and which is reflected at the test light reflector (48). In this respect, the test light reflector (48) is arranged such that it moves along with the deflection unit (18).