Abstract:
A transmission Raman spectroscopy apparatus has a light source for generating a light profile on a sample, a photodetector having at least one photodetector element, collection optics arranged to collect Raman scattered light transmitted through the sample and direct the Raman light onto the at least one photodetector element and a support for supporting the sample. The support and light source are arranged such that the light profile can be moved relative to the sample in order that the at least one photodetector element receives Raman scattered light generated for different locations of the light profile on the sample.
Abstract:
The present invention provides a light beam measuring instrument that can securely receive light reflected by a sample. The light beam measuring instrument 1 includes an optical axis tilting mechanism 13 that includes a first tilting mechanism 131 and a second tilting mechanism 132. From the optical axis A1 of irradiation light beam emitted from a light beam source 112, the first tilting mechanism 131 tilts the optical axis A1 about the first tilting axis T1. The second tilting mechanism 132 tilts the optical axis A1 about the second tilting axis T2. The light beam measuring instrument 1 can receive the light reflected by the semiconductor chip C by means of operation of the optical axis tilting mechanism 13 even if the light reflected by the semiconductor chip C is tilted. Accordingly, this apparatus can securely perform measurement or inspection using the light beam.
Abstract:
There is provided a method of avoiding deterioration of the accuracy in the number of detected light-emitting particles due to that two or more light-emitting particles are encompassed at a time in the light detection region in the scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope. In the inventive optical analysis technique, in the detection of an individual signal indicating light of a light-emitting particle by selectively detecting a signal having an intensity beyond a threshold value as a signal indicating light of a light-emitting particle in light intensity data produced through measuring light intensity during moving the position of a light detection region in a sample solution, the threshold value is set so that a signal indicating light from a light-emitting particle encompassed in a region narrower than the light detection region will be detected selectively.
Abstract:
A fluorometer for measuring a particular fluorescence emanating from a specimen and operating in accordance with the following method. Producing a burst of concentrated light energy and directing the concentrated light energy toward the specimen to produce a fluorescence from the specimen including the particular fluorescence. Preferably producing an image of the fluorescence. Detecting the fluorescence and producing a signal in accordance with the fluorescence. Controlling the passage of the image of the fluorescence for detecting within a particular time period so as to optimize the detection of the particular fluorescence. Timing the operation to sequence the detection of the fluorescence within the particular time period after the production of the burst of concentrated light energy. Scanning the fluorescence from the specimen for forming signals representative of the fluorescence from the specimen. Analyzing the signals to enhance the portion of the signal representing the particular fluorescence relative to the portion of the signal.
Abstract:
The subject invention discloses a method and apparatus for evaluating both the thickness and compositional variables in a layered or thin film sample. Two independent detection systems are provided for measuring thermal waves generated in a sample by a periodic, localized heating. One detection system is of the type that generates output signals that are primarily a function of the surface temperature of the sample. The other detection system generates signals that are primarily a function of the integral of the temperature beneath the sample surface. The two independent thermal wave measurements permit analysis of both thickness and compositional variables. An apparatus is disclosed wherein both detection systems can be implemented efficiently within one apparatus.
Abstract:
A method for microphotometering individual volume elements of a microscope specimen 10, comprising generating a luminous dot or cursor and progressively illuminating a plurality of part elements in the focal plane 11 of the microscope through the specimen. The mutual position between the specimen and the focal plane is then changed and a plurality of part elements in the focal plane are illuminated. Reflected and/or fluorescent light and transmitted light respectively created by the illumination is collected, detected and stored for generating a three-dimensional image of that part of the specimen composed of the volume elements. Illumination of multiples of part elements is implemented by deflecting the cursor and/or by moving the specimen. The change in the relative mutual position between the specimen and the focal plane of the microscope is effected either by displacing the specimen or the objective. Apparatus for carrying out the method include a specimen table 301, a microscope objective and light source 31-32-33. The table or the objective are arranged for stepwise movement along the main axis of the microscope synchronously with punctilinear light scanning of the specimen. The table is arranged for stepwise movement at right angles to the main axis and/or the light source is arranged for deflection over the focal plane 21 through the specimen.
Abstract:
A defect inspection device in which an optical axis of a detection optical system is inclined with respect to a surface of a sample, and an imaging sensor is inclined with respect to the optical axis, a height variation amount of an illumination spot in a normal direction of the surface of the sample is calculated based on an output of a height measuring unit, a deviation amount of the focusing position with respect to the light receiving surface in an optical axis direction of the detection optical system is calculated based on the height variation amount of the illumination spot, the deviation amount of the focusing position being generated accompanying a height variation of the illumination spot, and the focus actuator is controlled based on the deviation amount of the focusing position, and scattered light intensities at the same coordinates of the sample are added.
Abstract:
Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
Abstract:
There is provided a method of avoiding deterioration of the accuracy in the number of detected light-emitting particles due to that two or more light-emitting particles are encompassed at a time in the light detection region in the scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope. In the inventive optical analysis technique, in the detection of an individual signal indicating light of a light-emitting particle by selectively detecting a signal having an intensity beyond a threshold value as a signal indicating light of a light-emitting particle in light intensity data produced through measuring light intensity during moving the position of a light detection region in a sample solution, the threshold value is set so that a signal indicating light from a light-emitting particle encompassed in a region narrower than the light detection region will be detected selectively.