Abstract:
Provided is a field emission device. The field emission device includes an insulated cathode substrate facing an anode substrate, a plurality of cathodes arranged on the cathode substrate and separated from each other, and an emitter formed on each of the cathodes. In order to prevent accumulation of charges on an exposed area of the cathode substrate between the cathodes due to electrons discharged from the emitter, the distance between the cathodes is equal to or smaller than a first threshold value, and the distance from the emitter to the end of the cathode is equal to or greater than a second threshold value. Accordingly, in the field emission device in which a plurality of cathodes are separated from each other on the same plane, it is possible to prevent abnormal field emission and arc generation due to accumulated charges between the cathodes, thereby performing stable operation.
Abstract:
Provided is a field emission device. The field emission device includes an insulated cathode substrate facing an anode substrate, a plurality of cathodes arranged on the cathode substrate and separated from each other, and an emitter formed on each of the cathodes. In order to prevent accumulation of charges on an exposed area of the cathode substrate between the cathodes due to electrons discharged from the emitter, the distance between the cathodes is equal to or smaller than a first threshold value, and the distance from the emitter to the end of the cathode is equal to or greater than a second threshold value. Accordingly, in the field emission device in which a plurality of cathodes are separated from each other on the same plane, it is possible to prevent abnormal field emission and arc generation due to accumulated charges between the cathodes, thereby performing stable operation.
Abstract:
In accordance with the invention, an electron beam source for exposing selected portions of a surface to electrons comprises a plurality of nanoscale electron emitters and, associated with each electron emitter, a directional control element to direct the emitter toward a selected portion of the surface. In a preferred embodiment, the emitters are nanotubes or nanowires mounted on electrostatically controlled MEMS directional control elements. An alternative embodiment uses electrode directional control elements.
Abstract:
A solid state x-ray source (14) for a computed tomograph (CT) imaging system (10) is presented. X-ray source (14) has a cathode (58) which is preferably formed of a plurality of addressable elements. The cathode is positioned within a vacuum chamber (74) so that electrodes emitted thereby impinge upon anode (68) spaced apart from cathode (58). An electron beam (82) is formed and moved along the length of cathode (58). The anode (68) is disposed within a cooling block portion (58) and operatively adjacent to an x-ray transmissive window (66). The anode (68) and x-ray transmissive window (66) are disposed within an elongated channel (64) of the cooling block portion (56).
Abstract:
PROBLEM TO BE SOLVED: To provide: a method for manufacturing an electron emission device that exhibits stability in a manufacturing process and can perform low-voltage and high-efficiency electron emission stably; the electron emission device manufactured by such a manufacturing method; an electron source using the electron emission device; and a high-contrast image display apparatus using the electron source. SOLUTION: The method for manufacturing an electron emission device includes: a step of preparing a carbon layer containing conductive metal particles; a step of oxidizing part of the conductive metal particles; and a step of forming a dipole layer on the top surface of the carbon layer. The electron emission device is manufactured by such a manufacturing method for the electron emission device. The electron source includes a plurality of electron emission devices. The image display apparatus includes: the electron source; and a luminance member that emits light by electron irradiation. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
PURPOSE: A field emission device with a cathode electrode structure is provided to carry out a stable operation by preventing the occurrence of arc and the emission of an abnormal electric field which result from the accumulation of charges in an insulator between electrodes. CONSTITUTION: A cathode substrate of an insulator faces an anode substrate. A plurality of cathode electrodes(210) is separated from each other on the cathode substrate. An emitter(220) is formed on the cathode electrode. The distance of separation between a plurality of cathode electrodes is equal to or less than a first threshold.
Abstract:
본 발명은 전계 방출 장치에 대한 것으로서, 애노드 기판과 대향하는 절연체의 캐소드 기판, 상기 캐소드 기판 상에 서로 이격되어 배열되어 있는 복수의 캐소드 전극, 그리고 상기 캐소드 전극 상에 형성되는 에미터를 포함하며, 상기 에미터에서 방출된 전자로 인해 상기 캐소드 전극 사이의 상기 캐소드 기판에 전하가 축적되지 않도록 상기 복수의 캐소드 전극 사이의 이격 거리가 제1 임계값 이하이며, 상기 에미터로부터 상기 캐소드 전극 끝 단까지의 거리가 제2 임계값 이상이다. 따라서, 캐소드 전극이 같은 평면 상에서 복수 개로 분리된 전계방출 장치에서 전극 사이의 절연체에 전하가 축적됨으로써 발생하는 비정상적인 전계 방출 및 아크 발생을 막아 안정적인 동작이 가능하도록 한다. 전계, 방출, 캐소드, 애노드, 에미터