Abstract:
An ionization vacuum gauge which has at least three electrodes of a grid (2), an electron source (3) and an ion collector (1) in a vacuum vessel(4) connected in communication with a vacuum apparatus, oscillates electrons emitted from the electron source (3) within and outside of the grid (2), ionizes gas molecules flying into the grid (2) by the oscillated electrons, supplements the ionized ions by the ion collector (1) to convert into a current signal, and measures a gas molecular density (pressure) in the vacuum apparatus according to the obtained current intensity, wherein the ion collector (1) is provided with heating means for heating the ion collector.
Abstract:
An ionization gauge comprises a source of electrons which is disposed outside an anode volume defined by an open anode. A plurality of ion collector electrodes is disposed within said anode volume. A plurality of axially extending anode support posts support the open anode, said anode support posts being electrically connected to the open anode. The plurality of ion collector electrodes are respectively located sufficiently close to said plurality of axially extending anode support posts so as to substantially repel said electrons from said anode support posts.
Abstract:
Ionization gauge and method of operating same where the gauge may be of the Bayard-Alpert type and include a shield which completely encloses the electron source, the anode, and the collector electrode so that potentials external to the shield do not disturb the electric charge distribution within the shielded volume to thus stabilize the sensity of the gauge. The ionization gauge is further characterized by the following features which may be present either alone or in combination including: (a) the anode is provided with end caps which extend radially inward at least 25 % of the radius of the anode but not more than 75 % of the radius; (b) the ion collector has a diameter of not less than 0.015 in. and not more than 0.080 in.; (c) the ion collector extends at its free end at least through one of the partial end caps of the anode; (d) the electron source is not substantially longer axially than the region within the anode volume in which the electric field is predominantly directed radially inward and where the electron source is located substantially only adjacent to the foregoing region; (e) the anode is provided with a substantially uniformly transparent grid structure in the regions where the electrons enter the anode volume and where they exit the anode volume. A controller circuitry and method for controlling the operation of the ionization gauge has a source of electrons, an anode, and an ion collector electrode, including storing a plurality of calibration data sets for at least collector electrode currents and gauge sensitivities obtained with at least one reference gauge at representative values of known pressures; and calculating the gauge sensitivity corresponding to an unknown pressure in response to at least one of the data sets together with a measured value of the ion collector current. The data sets may also include representative values of the heating powers of the electron source so that the calculated sensitivity may also be compensated for variations in the electron source heating power.
Abstract:
Devices and corresponding methods can be provided to test an ionization gauge, such as a hot cathode ionization gauge, for leakage currents and to respond to the leakage currents to improve pressure measurement accuracy. Responding to the leakage current can include applying a correction to a pressure measurement signal generated by the gauge based on the leakage current. Responding to the leakage current can also include removing contamination causing the leakage current, where the contamination is on electrical feedthrough insulators or other gauge surfaces. Testing and correcting for leakage currents and removing contamination can be completed with the ionization pressure gauge in situ in its environment of use, and while the gauge remains under vacuum.
Abstract:
Shields for feedthrough pin insulators of a hot cathode ionization gauge are provided to increase the operational lifetime of the ionization gauge in harmful process environments. Various shield materials, designs, and configurations may be employed depending on the gauge design and other factors. In one embodiment, the shields may include apertures through which to insert feedthrough pins and spacers to provide an optimal distance between the shields and the feedthrough pin insulators before the shields are attached to the gauge. The shields may further include tabs used to attach the shields to components of the gauge, such as the gauge's feedthrough pins. Through use of example embodiments of the insulator shields, the life of the ionization gauge is extended by preventing gaseous products from a process in a vacuum chamber or material sputtered from the ionization gauge from depositing on the feedthrough pin insulators and causing electrical leakage from the gauge's electrodes.
Abstract:
In an ionization gauge, the effect of X-rays emitted when a collimated electron beam strikes grid surfaces in the gauge structure is reduced by a louvered beam stop. The louvered beam stop creates shadow regions having no X-rays, thus minimizing the amount of X-rays striking the collector plate and reducing the X-ray effect portion of the residual current.
Abstract:
An ionization gauge to measure pressure, while controlling the location of deposits resulting from sputtering when operating at high pressure, includes at least one electron source that emits electrons, and an anode that defines an ionization volume. The ionization gauge also includes a collector electrode that collects ions formed by collisions between the electrons and gas molecules and atoms in the ionization volume, to provide a gas pressure output. The electron source can be positioned at an end of the ionization volume, such that the exposure of the electron source to atom flux sputtered off the collector electrode and envelope surface is minimized. Alternatively, the ionization gauge can include a first shade outside of the ionization volume, the first shade being located between the electron source and the collector electrode, and, optionally, a second shade between the envelope and the electron source, such that atoms sputtered off the envelope are inhibited from depositing on the electron source.
Abstract:
Shields for feedthrough pin insulators of a hot cathode ionization gauge are provided to increase the operational lifetime of the ionization gauge in harmful process environments. Various shield materials, designs, and configurations may be employed depending on the gauge design and other factors. In one embodiment, the shields may include apertures through which to insert feedthrough pins and spacers to provide an optimal distance between the shields and the feedthrough pin insulators before the shields are attached to the gauge. The shields may further include tabs used to attach the shields to components of the gauge, such as the gauge's feedthrough pins. Through use of example embodiments of the insulator shields, the life of the ionization gauge is extended by preventing gaseous products from a process in a vacuum chamber or material sputtered from the ionization gauge from depositing on the feedthrough pin insulators and causing electrical leakage from the gauge's electrodes.
Abstract:
The invention relates to a Penning vacuum meter (1), comprising a cathode and an anode. According to the invention, the cathode (11) consists at least mainly of titanium in order to avoid the detrimental effects of the cathode disintegrating.
Abstract:
A method and apparatus for operating a multi-hot-cathode ionization gauge is provided to increase the operational lifetime of the ionization gauge in gaseous process environments. In example embodiments, the life of a spare cathode is extended by heating the spare cathode to a temperature that is insufficient to emit electrons but that is sufficient to decrease the amount of material that deposits on its surface or is optimized to decrease the chemical interaction between a process gas and a material of the at least one spare cathode. The spare cathode may be constantly or periodically heated. In other embodiments, after a process pressure passes a given pressure threshold, plural cathodes may be heated to a non-emitting temperature, plural cathodes may be heated to a lower emitting temperature, or an emitting cathode may be heated to a temperature that decreases the electron emission current.