Abstract:
An electrically powered vertical takeoff and vertical landing (VTOL) aircraft, which comprises at least two main propellers, wherein the main propellers are adapted to generate at least 70% of the aircraft propulsion. The aircraft also comprises at least one adjustment propeller, which has its propeller slipstream adapted to produce a torque relative to a first axis or the first and second axes with respect to a fuselage of the aircraft for turning the aircraft relative to said first axis or said first and second axes. In addition, not less than 35%, but not more than 85%, of the aircraft's mass is adapted to lie, during takeoff and/or landing, on a rear side of a propeller line of said main propellers with respect to a nose of the aircraft.
Abstract:
The invention relates to an aircraft (1) which can both take off and land vertically and can hover and also fly horizontally at a high cruising speed. The aircraft (1) has a support structure (27), a wing structure (15), at least three and preferably at least four lifting rotors (5) and at least one thrust drive (9). The wing structure (15) is designed to generate a lifting force for the aircraft during horizontal motion. To achieve this the wing structure (15) has at least one mainplane (3) provided with a profile that generates dynamic lift. The wing structure (15) is preferably designed as a tandem wing structure. Each of the lifting rotors (5) is fixed to the support structure (27), has a propeller (7) and is designed to generate a lifting force for the aircraft (1) by means of a rotation of the propeller (7), said force acting in a vertical direction. The thrust drive (9) is designed to generate a thrust force on the support structure (27), said force acting in a horizontal direction. The lifting rotors (5) can have a simple construction, i.e. they can have a simple rigid propeller for example, and a vertical take-off or hovering of the aircraft can be controlled, in a similar manner to quadcopters, by a simple control of the speeds of the lifting rotors. High cruising speeds can be achieved as a result of the additional horizontally acting thrust drive (9).
Abstract:
A convertiplane has the ability to take off like a helicopter and then fly horizontally like a conventional aircraft. The aircraft includes a variable incidence front wing of variable span located below the fuselage and mounted on a structure in the form of a venturi tube, a rear wing having two propellers for controlling the stability of the vehicle in pitch and roll installed therein, two counter-rotating, pivotally mounted ducted propellers equipped with four flaps orthogonal to each other provided on the sides of the cockpit, engines placed behind the cockpit close to the center of gravity, a static balancing system for controlling the center of gravity of the aircraft consisting of a weight placed in the lower part of the fuselage, self-propelled on the track rack longitudinally to the fuselage, and a digital flight control system.
Abstract:
An aircraft (10) takes off, lands, or hovers with at least one wing-mounted thrust-producing device (12) attached to at least one wing (16) of the aircraft and at least two fuselage-mounted thrust-producing devices (18) attached to a fuselage of the aircraft both providing vertical thrust. The aircraft (10) is flown while the at least one wing-mounted thrust-producing device (12) provides horizontal thrust and with the at least two fuselage-mounted thrust-producing devices (18) not providing any thrust.
Abstract:
This invention relates to a connection set that is used to attach and transfer force and torque between a wing (2a, 2b), comprising a lifting surface and a control surface (9) connected together by a hinge, and the central body (1) of an aircraft, which contains a servo-motor (10) used for actuating said control surface (9). The wing (2a, 2b) is connected to the central body (1) using a connection set comprised of two components. First, an attachment mechanism (3, 4, 5, 6) is used to align the wings (2a, 2b) relative to the central body (1) and to transfer the aerodynamic forces acting on the wing (2a, 2b) to the central body (1), preventing the wing (2a, 2b) from bending at its connection point. Second, a torque coupling mechanism (7, 8) is used to actuate the control surfaces that are present on the wings using servomotors (10) that are embedded within the central body (1). The connection set is engaged and disengaged using a single motion and does not require additional connection of electrical cables or mechanical fixations.
Abstract:
An unmanned aerial vehicle adapted for hover and short/vertical take-off and landing (S/VTOL) is disclosed. The vehicle comprises: a body having an aspect-ratio less than two and having therein a payload volume, at least one propeller located forward of the body, at least one rudder. The body may have an inverse Zimmerman planform which provides lift as air flows across the body in horizontal flight/fixed wing mode, and further adapted such that during hover and/or short/vertical take-off and landing (S/VTOL) the vehicle operates as a rotorcraft with the body oriented with the at least one propeller substantially above the body. The vehicle is suited to a method of inspection, such as power line inspection where large distances can be analysed efficiently by flying in fixed wing mode, but by transitioning to hover mode allows detailed inspection of selected areas.
Abstract:
A method of launching a powered unmanned aerial vehicle, the method comprising lifting the vehicle by attachment to a lighter-than-air carrier from a substantially ground-level location to an elevated altitude, wherein the vehicle is prevented from entering its flight mode during ascent, causing the vehicle to detach from the carrier while the velocity of the vehicle relative to the carrier is substantially zero, the vehicle thereafter decreasing in altitude as it accelerates to a velocity where it is capable of preventing any further descent and can begin independent sustained flight.
Abstract:
The invention relates to an aircraft (1), preferably an unmanned aircraft (UAV), drone, or unmanned aerial system (UAS), comprising a rigid wing (2), which enables aerodynamic horizontal flight, and at least four rotors (4, 4'), which are driven by means of controllable electric motors (5) and which can be pivoted between a vertical starting position and a horizontal flight position by means of a pivoting mechanism (7), wherein all electric motors (5) and rotors (4) are arranged on the wing (2).
Abstract:
A control system configured to control a deceleration process of an air vehicle which comprises at least one tiltable propulsion unit, each of the at least one tiltable propulsion units is tiltable to provide a thrust whose direction is variable at least between a general vertical thrust vector direction and a general longitudinal thrust vector direction with respect to the air vehicle.