Abstract:
The present invention relates to an electrochemical cell characterised in that it comprises at least a positive electrode which comprises manganese oxide physically separated from at least a negative electrode which comprises an aluminium alloy, and wherein said positive and negative electrodes are electrically connected through a neutral pH electrolyte. Further, the present invention relates to the use of the electrochemical cell, preferably as a button battery in hearing aids.
Abstract:
The present invention provides an Unmanned Aircraft System, including an integrated unmanned aerial vehicle and all related components and subsystems that can be packaged and transported as a kit, and customized to fit desired mission profiles, and easily repaired by replacement of damaged components or subsystems. The present invention further provides unmanned aircraft system components and subsystems that facilitate low power and low noise operation, and extended flight times.
Abstract:
The present invention relates to a device for generating aerodynamic lift and in particular an aircraft (100) for vertical take-off and landing. A wing arrangement (110) comprises at least one propulsion unit (111), wherein the propulsion unit (111) comprises a rotating mass which is rotatable around a rotary axis (117). The wing arrangement (110) is mounted to a fuselage (101) such that the wing arrangement (110) is tiltable around a longitudinal wing axis (112) of the wing arrangement (110) and such that the wing arrangement (110) is rotatable with respect to the fuselage (101) around a further rotary axis that differs to the longitudinal wing axis (112). An adjusting mechanism adjusts a tilting angle of the wing arrangement (110) around the longitudinal wing axis (112) under influence of a precession force (Fp) which forces the wing arrangement (110) to tilt around the longitudinal wing axis (112).
Abstract:
A rotary wing vehicle (1) includes a body structure having an elongated tubular backbone or core (40), and a counter-rotating coaxial rotor system (3, 5) having rotors with each rotor having a separate motor (54, 61) to drive the rotors about a common rotor axis of rotation (7), The rotor system is used to move the rotary wing vehicle (1) in directional flight.
Abstract:
The invention relates to a remote-controlled small flying object comprising at least one lift area (17), comprising at least one pair of propeller drives (12, 13), and comprising a weight element (20), the position of which can be varied to vary the centre of gravity of this small flying object (10) in the longitudinal direction of the small flying object (10). In order to accomplish a more compact and robust design with improved flying characteristics, the lift area (17) of the small flying object (10) is arranged above a plane formed by the axes of rotation of the propeller drives (12, 13) to generate a lifting force for vertical takeoff and/or landing.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft (150) can be launched from an apparatus that includes a launch carriage (120) that moves along a launch axis. A gripper (180) carried by the launch carriage can have at least one grip Portion (181) in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the fuselage of the aircraft as the launch carriage (120) decelerates, releasing the aircraft (150) for takeoff.
Abstract:
In embodiments, a system and method for providing propulsion and control to an air vehicle, and for operating the vehicle, include at least three propulsion units that provide vertical thrust for vectored thrust flight, in which at least one or two of the propulsion units also provide thrust for vectored thrust cruising or aerodynamic flight by suitably tilting the respective propulsion units for changing the thrust vector thereof. At the same time, the three or more propulsion units are operated to generate controlling moments to the air vehicle about three orthogonal axes, pitch, roll and yaw, during vectored thrust flight (hover, cruising, etc.) or during aerodynamic flight for controlling the vehicle.
Abstract:
The present invention discloses a landing method of an unmanned helicopter comprising changing a collective pitch blade angle based on a blade angle command calculated based on the deviation between a fed-back altitude and an altitude command and the deviation between a fed-back altitude change rate and an altitude change rate command, descending, and determining that the helicopter has landed, if the blade angle command of a predetermined value or less continues for a predetermined time.