Abstract:
A microchip with capillaries and method for making same is described. A sacrificial material fills microchannels formed in a polymeric substrate, the filled microchannels are covered by a top cover to form filed capillaries, and the sacrificial material is removed to form the microcapillaries. The sacrificial material fills the microchannels as a liquid whereupon it becomes solid in the microchannels, and is liquefied after the top cover is applied and affixed to remove the sacrificial material. The top cover may be solvent sealed on the substrate and of the same or different material as the substrate. The top cover may also be an in situ applied semipermeable membrane.
Abstract:
A process for producing at least one air gap in a microstructure, including supplying a microstructure having at least one gap filled with a sacrificial material that decomposes starting from a temperature θ1, this gap being delimited over at least one part of its surface by a non-porous membrane, composed of a material that forms a matrix and of a pore-forming agent that decomposes at a temperature θ2
Abstract:
The present invention refers to a procedure for the manufacture of micro-nanofluidic devices for flow control such as microvalves, micropumps and flow regulators, using a photodefinable polymer and an elastomer as structural materials and to the micro-nanofluidic devices for flow control obtained by said procedure.
Abstract:
A method of manufacturing a semiconductor device includes: a bonding step of bonding a first substrate with optical transparency and a second substrate having a surface on which a functional element is provided to each other such that the functional element faces the first substrate; a thinning step of thinning at least one of the first and second substrates; and a through-hole forming step of forming a cavity and a through-hole communicated with the cavity in at least part of a bonding portion between the first and second substrates. According to the present invention, it is possible to prevent irregularities or cracks caused by the presence or absence of the cavity and more regularly thin the substrate. In addition, it is possible to manufacture a semiconductor device capable of contributing to the miniaturization of devices and electronic equipment having the devices, using a more convenient process.
Abstract:
MEMS devices (such as interferometric modulators) may be fabricated using a sacrificial layer that contains a heat vaporizable polymer to form a gap between a moveable layer and a substrate. One embodiment provides a method of making a MEMS device that includes depositing a polymer layer over a substrate, forming an electrically conductive layer over the polymer layer, and vaporizing at least a portion of the polymer layer to form a cavity between the substrate and the electrically conductive layer. Another embodiment provides a method for making an interferometric modulator that includes providing a substrate, depositing a first electrically conductive material over at least a portion of the substrate, depositing a sacrificial material over at least a portion of the first electrically conductive material, depositing an insulator over the substrate and adjacent to the sacrificial material to form a support structure, and depositing a second electrically conductive material over at least a portion of the sacrificial material, the sacrificial material being removable by heat-vaporization to thereby form a cavity between the first electrically conductive layer and the second electrically conductive layer.
Abstract:
A method of forming air gaps within a solid structure is provided. In this method, a sacrificial material is covered by an overlayer. The sacrificial material is then removed through the overlayer to leave an air gap. Such air gaps are particularly useful as insulation between metal lines in an electronic device such as an electrical interconnect structure. Structures containing air gaps are also provided.
Abstract:
Compositions, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary composition, among others, includes a polymer and a catalytic amount of a negative tone photoinitiator.
Abstract:
A method of fabricating a polymer-based capacitive ultrasonic transducer, which comprises the steps of: (a) providing a substrate; (b) forming a first conductor on the substrate; (c) coating a sacrificial layer on the substrate while covering the first conductor by the same; (d) etching the sacrificial layer for forming an island while maintaining the island to contact with the first conductor; (e) coating a first polymer-based material on the substrate while covering the island by the same; (f) forming a second conductor on the first polymer-based material; (g) forming a via hole on the first polymer-based material while enabling the via hole to be channeled to the island; and (h) utilizing the via hole to etch and remove the island for forming a cavity.
Abstract:
Compositions, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary composition, among others, includes a polymer and a catalytic amount of a negative tone photoinitiator.
Abstract:
A method of photoresist removal is provided. The method employs a plasma formed from a gas chemistry comprising NH3. The method is particularly suitable for use in MEMS fabrication processes, such as inkjet printhead fabrication.